Вконтакте Facebook Twitter Лента RSS

Типы оплодотворения у животных. Оплодотворение у животных и растений

оплодотворение у животных, слияние женской (яйцеклетки, яйца) и мужской (сперматозоида, спермия) половых клеток (гамет). О. лежит в основе полового размножения, обеспечивая передачу наследств, признаков от родителей потомкам. Контакт сперматозоида с яйцом выводит последнее из заторможенного состояния и побуждает к развитию. В результате О. объединяются генотипы гамет, материально связанные с хромосомами, в единый генотип зиготы, способный развиваться в новый организм. При этом одинарный (гаплоидный) набор хромосом, получившийся в результате созревания гамет (гаметогенеза), снова становится двойным (диплоидным).

О. предшествует осеменение - наружное и внутреннее. При наружном осеменении (например, у большинства рыб) половые клетки выделяются во внешнюю среду, здесь происходит встреча яйца со сперматозоидом и О. При внутреннем осеменении (птицы и млекопитающие) встреча гамет происходит в женских половых путях, куда из яичника выделяются яйца и при спаривании вводятся сперматозоиды. У млекопитающих яйца развиваются внутри яйцевых фолликулов, проходя ряд стадий (См. Оогенез). Фолликулы выстланы многослойным эпителием и развитие их завершается образованием везикулярного, или граафова, фолликула. Яйцо (ооцит) при лопании фолликула (овуляции) выделяется из яичника вместе с окружающими его фолликулярными клетками яйценосного холмика, попадая на фимбрии маточной трубы, в ампулярном отделе которой происходит встреча яйца со сперматозоидом.

Различают 3 стадии О. В 1‑й стадии яйцо освобождается от окружающих её клеток фолликулярного эпителия яйценосного холмика. Это происходит под действием фермента гиалуронидазы, который выделяется передним концом головки сперматозоида. Гиалуронидаза разрушает связи между клетками фолликулярного эпителия, которые окружали яйцеклетку, и дает возможность проникнуть к ней сперматозоидам. Из огромного числа сперматозоидов, окружавших яйцеклетку, только нескольким удаётся проникнуть через её оболочку. Во 2‑й стадии в яйце в направлении того сперматозоида, который оказался ближе других к поверхности яйца, образуется воспринимающий бугорок, через который головка и шейка сперматозоида проникают в яйцо. В 3‑й стадии в цитоплазме яйца оказываются два ядра (пронуклеусы): женское и мужское, слиянием которых в одно ядро завершается О. Это слияние может совершиться до начала первого митотического деления. Или каждый из пронуклеусов по отдельности проходит митотическую профазу, а метафаза у них - общая. Сперматозоид вносит в яйцеклетку необходимую для образования митотического аппарата центросому. Плотно упакованный «пакет» митохондрий, располагающийся во вставочном отделе сперматозоида и имеющий вид спиральной нити, служит аккумулятором энергии. Чаще всего в яйцеклетку проникает один сперматозоид (моноспермия). В некоторых случаях (например, у птиц) в яйцеклетку проникает несколько сперматозоидов (полиспермия), но с женским пронуклеусом сливается всегда пронуклеус одного сперматозоида, который и осуществляет О. (рис.). Во время О. определяется пол будущего организма. Если в яйцеклетку проникает сперматозоид с Х‑хромосомой, то в зиготе оказываются две Х‑хромосомы и развивается самка; если проникает сперматозоид без Х‑хромосомы, то в генотипе нового организма оказывается лишь одна Х‑хромосома и развивается самец.

Первая стадия - освобожде­ние яйцеклетки от лучистого венца и разрыхление прозрач­ной оболочки под влиянием фермента гиалуронидазы, вы­деляемого спермиями.

Для это­го требуется участие большого числа (тысяч) спермиев. Рас­сеивание клеток лучистого вен­ца -это не видовая особен­ность, оно может происходить под влиянием спермиев живот­ных и другого вида.

Для оплодотворения необяза­тельно полное освобождение яй­цеклетки от клеток лучистого венца. Достаточно лишь места, чтобы спермии проникли через прозрачную оболочку яйцеклет­ки в околожелточное простран­ство.

На крольчихах установлено, что оплодотворение не происхо­дит, если при осеменении сам­ки вносится менее 1000 сперми­ев, а также при избыточном - более 100 млн., что связано в первом случае с недостатком гиалуронидазы или с ее избыт­ком во втором случае.

Вторая стадия - проникнове­ние спермиев в прозрачную обо­лочку яйцеклетки, где их на­капливается до нескольких де­сятков: у коров и овец - до 100, у свиней-от 200 до 1000, у кобыл-до 10.

Сквозь про­зрачную оболочку яйцеклетки не проходят спермии других (отдаленных) видов животных.

Третья стадия - проникнове­ние спермиев через желточную оболочку в протоплазму яйце­клетки. При сближении половых клеток ферменты акросомы головки спермия разрушают вторичную оболочку яйцеклетки. С момента соприкосновения спермия к плазмолемме яйцеклетки на ее поверхности образуется выпячивание цитоплазмы – воспринимающий бугорок, или бугорок оплодотворения.

В ооцит проникают головка, шейка, несущая центросому, и начальная часть хвостового отдела. Эта стадия строго спе­цифична и отличается высокой избирательностью: в яйцеклет­ку могут проникать только спермии своего вида.

Сквозь желточную оболочку яйцеклет­ки, как правило, проникает один спермий. Внедрившись в цитоплазму яйцеклетки, спер­мии претерпевает большие из­менения.

Головка спермия отде­ляется от хвоста, набухает, округляется и приобретает форму округлого ядра – мужской пронуклеус.

После проникновения спермия в яйцеклетку вокруг нее формируется оболочка оплодотворения, препятствующая проникновению в ооцит других спермиев. Яйцеклетки выделяют особые вещества – агглютинины. Они склеивают другие спермии, а фолликулярные клетки лучистого венца их поглощают.

Четвертая стадия - слияние пронуклеусов (полуядер) яйце­клетки и спермия. Эта стадия длится 4- 7 ч и завершается образовани­ем качественно новой клетки (зиготы) с диплоидным, т. е. нормальным, или полным, как и в соматических клетках ор­ганизма, для данного вида жи­вотного набором хромосом: в соматических клетках у круп­ного рогатого скота 60, а в по­ловых с гаплоидным (половин­ным) набором (яйцеклетки и спермии) - по 30, у лошадей- соответственно 66 и по 33; у свиней-З8 и по 19; у овец-54 и по 27; у собак - 22 и по 11. Число хромосом остается посто­янным из поколения в поколе­ние. Образовавшаяся зигота имеет двойную наследствен­ность (матеря и отца).

В зиготе резко ускоряются об­менные процессы: увеличивает­ся поглощение кислорода в 3- 4 раза по сравнению с неопло­дотворенной яйцеклеткой; в пер­вые же минуты отмечается уси­ление углеводного обмена, резко возра­стает (в 100 и более раз) фос­фатный обмен, в 10 и более раз - калийный и кальциевый обмены;

В зиготе происхо­дит перестройка цитоплазмы и начинается интенсивный про­цесс дробления. При этом зи­гота делится на две дочерние клетки-бластомеры, из двух образуется 4, из четырех - 8 и так далее, и начинается форми­рование и развитие нового ор­ганизма.

Оплодотворение происходит в ближайшей к яичнику трети яйцепровода. Образовавшаяся после оплодотворе­ния зигота постепенно перемещается в яйцепроводе по направлению к матке.

Половое размножение организмов связано с их морфологической и физиологической половой дифференциацией (половой диморфизм) и половым процессом.

Половой процесс характеризуется системой приспособительных механизмов:

  1. образованием мужских и женских гамет,
  2. их слиянием в процессе оплодотворения (сингамия),
  3. объединением ядер (кариогамия),
  4. синаупсисогомологивдных хромосом в мейозе и перекомбинацией наследственных факторов.

Цикл полового размножения охватывает период от момента формирования половых клеток до их нового воспроизведения в следующем поколении.

Оплодотворением принято называть побуждение яйца к развитию в результате кариогамии. Оплодотворение представляет собой процесс необратимый - оплодотворенное однажды яйцо не может быть оплодотворено вновь. Сингамия и кариогамия составляют сущность процесса оплодотворения. Однако у некоторых видов воспроизведение нового поколения осуществляется на основе только женской гаметы - яйцеклетки без оплодотворения (девственное размножение). В этом случае половое размножение также заканчивается созреванием гамет. Оба эти способа размножения могут чередоваться у одного и того же вида.

В процессе оплодотворения осуществляются следующие важные генетические явления, необходимые для существования вида:

  • восстановление диплоидного набора хромосом, а в пределах диплоидного набора - парности гомологичных (материнских и отцовских) хромосом, разошедшихся в мейозе в процессе образования половых клеток у родительских организмов;
  • обеспечение материальной непрерывности между следующими друг за другом поколениями;
  • объединение в одном индивидууме наследственных свойств материнского и отцовского организмов.

Для обеспечения оплодотворения необходимо одновременное созревание гамет материнского и отцовского организма. У перекрестноопыляющихся растений созревание мужских и женских половых клеток может не совпадать во времени, и это несоответствие служит приспособительным механизмом, препятствующим самоопылению. Возможно, что несоответствие во времени созревания половых клеток у разных полов одного вида является одним из путей возникновения перекрестного опыления.

Оплодотворение у животных

Процесс оплодотворения у животных можно разделить на несколько фаз.

Первая фаза начинается с того, что сперматозоид либо прикрепляется к любой точке поверхности яйца, либо проникает в нее через микропиле. Момент соприкосновения головки сперматозоида с яйцом является начальным в цепи химических реакций. Эту фазу называют фазой активации яйца . В норме активацию яйца вызывают сперматозоиды своего вида. В некоторых случаях (у червя Rhabdites monohystera) сперматозоиды могут активировать яйцо, но при этом мужское ядро не сливается с материнским. Такое явление называют псевдогамным оплодотворением .

Вторая фаза процесса оплодотворения начинается после проникновения в яйцо, одного, а у некоторых животных и нескольких сперматозоидов. Проникший сперматозоид «готовится» к слиянию с женским ядром и последующему митозу: ядро сперматозоида постепенно набухает и приобретает вид интерфазного ядра. Такое ядро называют семенным, или мужским, пронуклеусом .

К моменту соприкосновения сперматозоида с яйцом и проникновения его внутрь ядро яйцеклетки у разных животных может находиться на разных стадиях деления созревания. Ядро яйцеклетки, готовое к слиянию с ядром сперматозоида, называют женским пронуклеусом. Собственно оплодотворение, т. е. слияние отцовского и материнского пронуклеусов, возможно лишь после окончания мейоза.

Проникновение сперматозоида может происходить на стадиях:

  1. ооцита I с покоящимся ядром
  2. ооцита I в стадии метафазы I
  3. ооцита II в стадиях мета — или анафазы II
  4. зрелой яйцеклетки

У иглокожих и кишечнополостных сперматозоид может проникать в яйцеклетку после завершения мейоза. Такое оплодотворение называют оплодотворением типа морского ежа . После проникновения сперматозоида в яйцо его ядро вскоре соединяется с женским ядром; ядро зиготы приступает к первому делению - дроблению яйца.

У бесчерепных (ланцетник) и всех позвоночных проникновение сперматозоида в яйцеклетку происходит, как правило, во время метафазы II. У асцидий, двустворчатых моллюсков и ряда других животных сперматозоид проникает в яйцеклетку на стадии метафазы I, а у губок, аскарид и некоторых других животных - на стадии ооцит I, т. е. до наступления мейоза. Этот тип оплодотворения называют типом аскариды . Проникший в цитоплазму яйца сперматозоид «ожидает» в стадии покоя окончания второго мейотического деления яйца.

В акте оплодотворения два гаплоидных пронуклеуса сливаются в одно ядро. Кариогамия дает начало новому качественному процессу - развитию зиготы. Этот момент является кульминационным пунктом процесса полового размножения. В результате кариогамии, гомологичные хромосомы, разошедшиеся в мейозе предыдущего поколения, вновь воссоединяются в одном ядре зиготы.

Для понимания ряда важных генетических явлений необходимо знать, какие элементы сперматозоида проникают в яйцеклетку. Раньше считалось, что цитоплазма сперматозоида и ее органоиды не попадают в яйцеклетку. В настоящее время все больше накапливается фактов в пользу того, что в цитоплазму яйцеклетки у млекопитающих проникает не только головка (ядро) сперматозоида, но и его шейка и даже хвостовая часть. Если это подтвердится, то взгляды на роль цитоплазмы мужского организма в передаче его свойств потомству должны быть пересмотрены. Впрочем, генетических данных на этот счет пока нет; известны лишь факты передачи вирусных заболеваний.

Вместе с ядром сперматозоида в цитоплазму яйцеклетки проникает центриоль, которая через некоторое время образует центросферу, дающую начало веретену дробления.

Приведенное общее описание оплодотворения у животных в деталях может варьировать у разных видов. Вследствие этих изменений процесс оплодотворения у каждого вида может протекать специфично, препятствуя межвидовому скрещиванию.

Оплодотворение у растений

У растений так же, как и у животных, сущность оплодотворения сводится к слиянию двух гаплоидных ядер.

Оплодотворение у растений в принципе сходно с таковым у животных, однако существование у растений гаметофита привело к появлению у них и некоторых особенностей.

Цитологический механизм этого процесса у голосеменных был создан русским ботаником Н. Н. Горожанкиным в 1880 г., а у покрытосеменных - Е. Страсбургером в 1884 г. Е. Страсбургер охарактеризовал оплодотворение у покрытосеменных следующим образом:

  1. процесс оплодотворения включает в себя слияние ядра мужской и женской гамет,
  2. цитоплазма гамет не имеет отношения к оплодотворению,
  3. ядро спермия и ядро яйцеклетки суть настоящие ядра.

Слияние спермия с ядром яйцеклетки и является собственно актом оплодотворения, в результате которого образуется зигота с диплоидным набором хромосом.

Выше было сказано, что микрогаметогенез завершается образованием двух спермиев, которые возникают или в пыльцевом зерне, или в пыльцевой трубке при прорастании пыльцевого зерна. Время начала прорастания зерен после попадания их на рыльце у разных растений варьирует в зависимости, от внешних условий и состояния рыльца и пестика. Так, например, у свеклы прорастание пыльцевых зерен начинается через 2 ч, у кок-сагыза - через 5 мин, а у кукурузы, сорго и других растений происходит почти немедленно.

Первым признаком прорастания пыльцевого зерна является увеличение его объема. Обычно из одного пыльцевого зерна образуется одна трубка, но у некоторых растений (мальвовые, тыквенные) из одного зерна образуется несколько трубок, однако полного развития достигает лишь одна из них. Характер роста пыльцевых трубок определяется наследственными свойствами растений. К. Корренсом у MeiaridrTum (дрёма) было обнаружено, что при одновременном прорастании на рыльце нескольких пыльцевых зерен скорость роста пыльцевых трубок нередко зависит от их числа: чем больше их, тем медленнее они прорастают, при этом наблюдается конкуренция.

Пыльцевая трубка, дорастая до микропиле, приходит в соприкосновение с той частью зародышевого мешка, где находится яйцевой аппарат - яйцеклетка и синергиды. Впрочем, у некоторых растений пыльцевая трубка подходит к зародышевому мешку через халазальную часть семяпочки.

Передвигающиеся по пыльцевой трубке по мере ее роста два генеративных ядра - спермия после разрыва трубки вместе с ее содержимым попадают внутрь зародышевого мешка. Спермин могут быть округлой, штопорообразной формы, иногда разрыхленные, с видимыми хромосомными нитями и др. Ядра их в этот момент, как правило, находятся в стадии телофазы. Из двух проникших в зародышевый мешок спермиев один спермий внедряется яйцеклетку и сливается с гаплоидным ядром последней. Слияние ядра спермия с ядром яйцеклетки является центральным моментом оплодотворения у растений.

У растений так же, как и у животных, готовность к слиянию мужского и женского ядер может быть различной. Условно можно считать, что у растений имеются два типа оплодотворения: тип сложноцветных, аналогичный типу морского ежа у животных, и тип лилейных, аналогичный типу аскариды. В первом случае (тип сложноцветных) ядро спермия проникает в зрелую яйцеклетку в состоянии незавершенной телофазы, растворяет оболочку ядра яйцеклетки и переходит в интерфазное состояние. Во втором случае (тип лилейных) спермий проникает в яйцеклетку, находясь на стадии поздней телофазы. Ядро спермия не проникает в ядро яйцеклетки, а остается лежать рядом с ним. Каждое ядро в дальнейшем начинает подготавливаться к делению обособленно, и объединение их хромосом происходит только на стадии метафазы первого митотического деления зиготы. В оплодотворенной яйцеклетке - в зиготе восстанавливается диплоидное число хромосом. Из зиготы развивается зародыш семени.

После оплодотворения у покрытосеменных растений развивается дополнительный эмбриональный орган - эндосперм, который представляет собой питательное депо зародыша. Начало развития эндосперма вторым оплодотворением. Второй спермий пыльцевой трубки, попадая в зародышевый мешок» сливается с диплоидным ядром центральной клетки зародышевого мешка. При этом образуется набор хромосом: два одинаковых набора хромосом материнского организма и один набор отцовского.

Слияние одного спермия с яйцеклеткой, а другого - с ядром центральной клетки называют двойным оплодотворением . Честь этого открытия, сделанного в 1898 г., принадлежит нашему соотечественнику С. Г. Навашину. Триплоидная природа ядер эндосперма впервые была установлена у скерды (Crepis) М. С. Навашиным в 1915 г.

Образование ткани, питающей зародыш, является особенностью растений. У животных эта функция возложена на запасные питательные вещества яйцеклетки и материнский организм, питающий зародыш через плаценту.

Одна из особенностей оплодотворения у растений, вытекающая из наличия у них двойного оплодотворения, представляет собой явление, называемое ксениями . Этот термин был предложен в 1881 г. В. Фоке. Смысл этого явления заключается в прямом влиянии пыльцы на признаки и свойства эндосперма. Например, имеются сорта кукурузы с желтым эндоспермом (желтые семена) и с белым эндоспермом (белые семена). Если женские цветки белозерного сорта опылить пыльцой желтозерного сорта, то, несмотря на то, что эндосперм развивается на растении белозерного сорта, окраска его будет желтой или бледно-желтой. Следовательно, ядро спермия способно изменить окраску эндосперма, ибо эта ткань так же как и ткань зародыша, гибридного происхождения.

Таков в самых общих чертах процесс оплодотворения у животных и растений. Однако он подвержен приспособительным изменениям в зависимости от особенностей строения половых клеток и биологии размножения, свойственных каждому виду животных и растений.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

другие презентации на тему «Типы оплодотворения у животных»

«Двойное оплодотворение у растений» - Внутреннее оплодотворение. Развитие зародыша млекопитающего. Оплодотворение у растений Макроспорогенез. Яйцекладный. Внешнее. Происходит у насекомых, рыб, земноводных Метаморфоз – превращение во взрослую особь. Рыбы, земноводные, большинство моллюсков, некоторые черви. Оплодотворение у животных. Онтогенез.

«Классификация животных» - Млекопитающие. Животные. Плотоядные. Проблема: «От чего зависит питание животного?». Классификация животных по типу питания. Земноводные (амфибии). Как питаются животные. Цель: обобщить и систематизировать знания о строении и разнообразии животных; выявить особенности питания животных. Пресмыкающиеся (рептилии).

«Животные 2 класс» - Тигр. Животные, тело которых покрыто скользкой чешуёй. Зачем нужны домашние животные? Домашние животные. Рыбы-водные обитатели. Животные. Нужно ли такое разнообразие животных? Разнообразие животных. Дикие Звери. Кто лишний? Корова. С помощью жабр рыбы дышат кислородом, растворённым в воде. Насекомые.

«Окружающий мир Животные» - Заводы выбрасывают очень много вредных веществ. О братьях наших меньших. Проект рассчитан на учащихся 3 класса. Длительность – одна неделя. Творческое название. Может ли быть наша планета без животных? О проекте. Мир животных. Основополагающий вопрос. Состав УМК. Цели проекта. Предметная область данного проекта – «Окружающий мир».

«Типы животных» - Тело сегментировано, полость заполнена жидкостью. Пищеварительная система. Подошва. Нервная система и органы чувств. Рот. Устье. Из личинки развивается ВЗРОСЛЫЙ ЧЕРВЬ, который откладывает яйца. Кишка. План повторения. Коралловые полипы Прикрепленные Имеют скелет, образованный роговым веществом. Класс Головоногие.

У большинства водных и земноводных животных оплодотворение непосредственно связано с водой. Эти животные в период размножения выделяют очень много яйцеклеток и сперматозоидов в воду, где сперматозоиды проникают в яйцеклетку и оплодотворяют ее. Это - внешнее осеменение. У животных, обитающих на суше, наблюдается внутреннее осеменение.

В процессе оплодотворения сперматозоид сначала приближается к яйцеклетке. Под воздействием ферментов, находящихся в головке сперматозоида, оболочка яйцеклетки растворяется и в ней образуется небольшое отверстие, через которое ядро сперматозоида проникает внутрь яйцеклетки. Гаплоидные ядра обеих гамет, соединяясь, образуют единое гаплоидное ядро, после чего начинается деление и развитие ядра зиготы.

В большинстве случаев одну яйцеклетку оплодотворяет только один сперматозоид. У некоторых животных в яйцеклетку могут проникать два или несколько сперматозоидов, однако в оплодотворении яйцеклетки участвует только один сперматозоид, остальные погибают.

2. Уровни организации живой природы.

Молекулярный. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.

Клеточный. Клетка - структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии.

Организменный. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии - от момента зарождения до прекращения существования - как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций.

Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция - надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования - процесс микроэволгоции.

Биогеоценотический. Биогеоценоз - совокупность организмов разных видов "и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества.



Биосферный. Биосфера - совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

Билет №17

1.Основные ароморфозы в эволюции растений.

Ароморфозы - эволюционные изменения, способствуют общему подъему организации и повышению интенсивности жизнедеятельности организмов, освоению новых сред обитания, выживанию в борьбе за существование. Ароморфоз - основа повышения выживаемости организмов, увеличения численности популяций, расширения их ареала, образования новых популяций, видов.

Возникновение в клетках хлоропластов с хлорофиллом, фотосинтеза - важный ароморфоз в эволюции органического мира, обеспечивший все живое пищей и энергией, кислородом. Появление от одноклеточных многоклеточных водорослей - ароморфоз, способствующий увеличению размеров организмов.

2.Биосфера - глобальная экосистема. Учение В.И. Вернадского о биосфере.

По современным представлениям, биосфера - это особая оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в {непрерывном обмене с этими организмами.
Эти представления базируются на учении В. И. Вернадского (1863-1945) о биосфере, являющимся крупнейшим из обобщений в области естествознания в XX в. Исключительная значимость его учения В. И. Вернадского о биосфере во весь рост проявилась лишь во второй Головине прошлого века. Этому способствовало развитие экологии, и прежде всего глобальной экологии, где биосфера является основополагающим понятием.
Учение В. И. Вернадского о биосфере - это целостное фундаментальное учение, органично связанное с важнейшими проблемами сохранения и развития жизни на Земле, знаменующее собой принципиально новый подход к изучению планеты, как развивающейся саморегулирующейся системы в прошлом, настоящем и будущем.
По представлениям В. И. Вернадского, биосфера включает живое вещество (т. е. все живые организмы), биогенное уголь , известняки, нефть и др.), косное (в его образовании Живое не участвует, например магматические горные породы), биокосное (создается с помощью живых организмов), а также радиоактивное вещество, вещество космического происхождения (метеориты и др.) и рассеяние атомы . Все эти семь различных типов веществ геологически связаны между собой.



Билет №18

1. Основные ароморфозы в эволюции позвоночных животных.

Ароморфозы -крупное эволюционное изменение. Оно обеспечивает повышение уровня организации организмов, преимущества в борьбе за существование, возможность освоения новых сред обитания.

Четырехкамерное сердце, полное разделение артериальной и венозной крови, теплокровность, высокая степень развития коры больших полушарий, внутриутробное развитие зародыша, наличие молочных желез и выкармливание детеныша молоком, наличие диафрагмы

2. Роль живых организмов в биосфере. Влияние человека на биосферу.

Живые существа способствуют переносу и круговороту веществ в природе. Благодаря де­ятельности фотосинтетиков в атмосфере снизи­лось количество углекислого газа, появился кислород и сформировался защитный озоновый слой. Деятельность живых организмов опреде­ляет состав и структуру почвы (переработка ре­дуцентами органических остатков), предохра­няет ее от эрозии. В значительной мере живот­ные и растения определяют также содержание различных веществ в гидросфере (особенно в небольших по размеру водоемах). Некоторые организмы способны избирательно поглощать и накапливать определенные химические эле­менты - кремний, кальций, йод, серу и т. д. Результатом активности живых существ явля­ются отложения известняков, железных и мар­ганцевых руд, запасов нефти, угля, газа.

Билет №19

1. Основные признаки живого

Основные признаки живого: питание, дыхание, выделение, раздражимость, подвижность, размножение, рост и развитие

1. Живые организмы - важный компонент биосферы. Клеточное строение - характерный признак всех организмов, за исключением вирусов. Наличие в клетках плазматической мембраны, цитоплазмы, ядра. Особенность бактерий: отсутствие оформленного ядра, митохондрий, хлоропластов. Особенности растений: наличие в клетке клеточной стенки, хлоропластов, вакуолей с клеточным соком, автотрофный способ питания. Особенности животных: отсутствие в клетках хлоропластов, вакуолей с клеточным соком, оболочки из клетчатки, гетеротрофный способ питания.

2. Наличие в составе живых организмов органических веществ: сахара, крахмала, жира, белка, нуклеиновых кислот и неорганических веществ: воды и минеральных солей. Сходство химического состава у представителей разных царств живой природы.

3. Обмен веществ - главный признак живого, включающий питание, дыхание, транспорт веществ, их преобразование и создание из них веществ и структур собственного организма, освобождение энергии в одних процессах и использование в других, выделение конечных продуктов жизнедеятельности. Обмен веществами и энергией с окружающей средой.

4. Размножение, воспроизведение потомства - признак живых организмов. Развитие дочернего организма из одной клетки (зиготы при половом размножении) или группы клеток (при вегетативном размножении) материнского организма. Значение размножения в увеличении численности особей вида, их расселении и освоении новых территорий, сохранении сходства и преемственности между родителями и потомством в ряду многих поколений.

5. Наследственность и изменчивость - свойства организмов. Наследственность - свойство организмов передавать присущие им особенности строения и развития потомству. Примеры наследственности: из семян березы вырастают растения березы, у кошки рождаются похожие на родителей котята. Изменчивость - возникновение у потомства новых признаков. Примеры изменчивости: растения березы, выросшие из семян материнского растения одного поколения, различаются по длине и окраске ствола, числу листьев и др.

6.Раздражимость - свойство живых организмов. Способность организмов воспринимать раздражения из окружающей среды и в соответствии с ними координировать свою деятельность, поведение - комплекс приспособительных двигательных реакций, возникающих в ответ на разнообразные раздражения из окружающей среды. Особенности поведения животных. Рефлексы и элементы рассудочной деятельности животных. Поведение растений, бактерий, грибов: разные формы движения - тро-пизмы, настии, таксисы.

2. Селекция, её практическое значение. Основные методы селекции: гибридизация, искусственный отбор.
Селекция - наука о методах создания новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов, с полезными для человека свойствами. Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных.

Гибридизация (скрещивание) и искусственный отбор - главные методы селекции растений и животных.

Скрещивание как способ увеличения наследственной неоднородности особей сорта или породы, получения исходного материала для искусственного отбора. Виды скрещивания: близкородственное (скрещивание особей одного сорта или породы) , неродственное (скрещивание особей разных сортов, пород, разных видов) .
Искусственный отбор - сохранение селекционером для размножения особей с нужными человеку признаками, не всегда полезными для самого организма, в отличие от естественного отбора, который сохраняет особей с полезными им признаками.

Билет №20

1. Доказательство происхождения человека от животных

1. Научное обоснование Ч. Дарвином идеи происхождения человека от животных на основе установления сходства человека с млекопитающими животными, особенно с человекообразными обезьянами. Утверждение Ч. Дарвина, что современные человекообразные обезьяны не могут быть предками человека.

2. Доказательства происхождения человека от животных: сравнительно-анатомические, эмбриологические, палеонтологические.

3. Сравнительно-анатомические доказательства происхождения человека от млекопитающих животных: человек имеет все признаки класса млекопитающих и относится к этому классу, сходное строение всех систем органов, имеет диафрагму, млечные железы, ушные раковины и др. Наличие у человека рудиментов (развитых у млекопитающих, но атрофированных у человека органов): копчика, аппендикса, остатка третьего века (всего около 90 рудиментов) - доказательство родства человека с животными. Случаи рождения детей с признаками млекопитающих животных - атавизмы (возврат к предкам): с густым волосяным покровом тела, с большим числом сосков, с удлиненным хвостовым отделом позвоночника - доказательство происхождения человека от животных.

4. Эмбриологические доказательства происхождения человека от животных: сходство развития зародышей человека и животных, развитие начинается с одной оплодотворенной клетки, на определенном этапе у зародыша человека закладываются жаберные щели, развит хвостовой отдел позвоночника, мозг месячного эмбриона имеет сходство с мозгом рыбы, а семимесячного - с мозгом обезьяны и др.

5. Сходство строения, жизнедеятельности, поведения человека и человекообразных обезьян. Выражение обезьянами чувства радости, гнева, печали, забота о детенышах, хорошая память, развитая высшая нервная деятельность, использование предметов как орудий труда, сходные с человеком болезни. 6. Палеонтологические доказательства - находки ископаемых остатков предков человека, сходство их строения с современным человеком и человекообразными обезьянами - свидетельство их родства, а также развития предков человека и современных человекообразных обезьян по разным направлениям: по пути все большего формирования человеческих черт у предков человека и узкой специализации человекообразных обезьян к жизни в определенных условиях, к определенному образу жизни.

2. Наследственная изменчивость. Влияние мутагенов на организм человека.

Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях.
В каждой достаточно длительно существующей совокупности особей спонтанно и не направленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами.
Изменчивость, обусловленную возникновением мутаций, называют мутационной, а обусловленную дальнейшим перекомбинированием генов в результате скрещивания - комбинационной.

Мутаген - это фактор окружающей среды или фактор эндогенной природы, способный нарушать генетические программы клеток и вызывать в организме изменения наследственных свойств. Мутагенной активностью обладают многочисленные и широко распространенные загрязнители химической и физической природы, а также вирусы, бактерии и пр. Обширная группа наследственных болезней обусловлена либо отклонениями от нормального содержания хромосом, либо генетическими дефектами в результате мутаций в отдельных участках хромосом.

Билет №21

1.Индивидуальное развитие организма. Стадии развития зародыша.

Онтогенезом называют совокупность процессов, протекающих в организме, с момента образования зиготы до смерти.

Его подразделяют на два этапа: эмбриональный ипостэмбриональный.

Эмбриональный период
Эмбриональным считают период зародышевого развития с момента образования зиготы до выхода из яйцевых оболочек или рождения, в процессе зародышевого развития эмбрион проходит стадии дробления, гаструляция, первичного органогенеза и дальнейшей дифференцировки органов и тканей.
Дробленое . Дроблением называют процесс образования многоклеточного однослойного зародыша - бластулы. Для дробления характерно: 1) деление клеток путем митоза с сохранением диплоидного набора хромосом; 2) очень короткий митотический цикл; 3) бластомеры не дифференцированы, и в них не используется наследственная информация;4) бластомеры не растут и в дальнейшем становятся все меньше; 5) цитоплазма зиготы не перемешивается и не перемещается.

Стадии развития зародыша.

1. Период одноклеточного зародыша, или зиготы, кратковременный, протекающий с момента оплодотворения до начала дробления яйца.
2. Период дробления. В этот период происходит размножение клеток, Получившиеся при дроблении клетки называют бластомерами. Вначале образуется кучка бластомеров, напоминающая по форме ягоду малины,- морула, затем шаровидная однослойная бластула; стенка бластулы - бластодерма, полость - бластоцеле.
3. Гаструляция. Однослойный зародыш превращается в двухслойный - гаструлу, состоящую из наружного зародышевого листка - эктодермы и внутреннего - энтодермы. У позвоночных уже в ходе гаструляции возникает и третий зародышевый листок - мезодерма. В ходе эволюции у хордовых процесс гаструляции усложнился возникновением осевого комплекса зачатков (закладка нервной системы, осевого скелета и мускулатуры) на спинной стороне зародыша.
4. Период обособления основных зачатков органов и тканей и их дальнейшее развитие. Одновременно с этими процессами усиливается объединение частей в единое развивающееся целое. Из эктодермы образуется эпителий кожи, нервная система и частично органы чувств, из энтодермы - эпителий пищеварительного канала и его железы; из мезодермы - мышцы, эпителий мочеполовой системы и серозных оболочек, из мезенхимы - соединительная, хрящевая и костная ткани, сосудистая система и кровь.

Последствия влияния алкоголя никотина наркотических веществ на зародыш человека.

Систематическое употребление наркотических веществ, к которым относится алкоголь, и даже никотин, вызывает повреждение зародышевых клеток – сперматозоидов и яйцеклеток. Может родиться ребенок с отставанием в длине и массе тела, плохо развивающийся физически, предрасположенный к развитию каких-либо заболеваний. Чем сильнее наркотическое вещество, употребляемое родителями, тем серьезнее могут быть изменения в организме детей. Особенно опасно употребление этих веществ женщинами.

2. Борьба за существование. Предпосылка естественного отбора. Формы борьбы за существование.

Борьба за существование – сложные и многообразные взаимоотношения особей внутри вида, между видами и с неблагоприятными условиями неживой природы. Ч. Дарвин указывает, что несоответствие между возможностью видов к беспредельному размножению и ограниченностью ресурсов – главная причина борьбы за существование. Борьба за существование бывает трех видов:

· Внутривидовая

· Межвидовая

· Борьба с абиотическими факторами

Билет №22

1. Естественный отбор – направляющий фактор эволюции.

Естественный отбор – единственный фактор, определяющий направленность эволюционного процесса, приспособление организмов к определенной среде обитания. Благодаря отбору в популяции сохраняются и размножаются особи с полезными, то есть соответствующими среде обитания, мутациями. Особи, менее приспособленные к среде обитания, гибнут или выживают, но потомство их немногочисленно.

2. Прокариотические организмы. Их характеристика.

Прокариоты, или доядерные - одноклеточные живые организмы, не обладающие (в отличие от эукариот) оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Для клеток прокариот характерно отсутствиеядерной оболочки, ДНК упакована без участия гистонов. Тип питания осмотрофный.

Билет №23

1. Энергетический обмен в клетке роль митохондрий в нем.

Энергетический обмен - это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов.

Митохондрии называют энергетическими станциями клетки. Именно в митохондриях происходит сгорание всех видов веществ, митохондрии поставляют АТФ как универсальное энергетическое топливо для всех видов работ и синтеза в тканях организма.

2. Ненаследственная наследственность.

Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях.

В каждой достаточно длительно существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами.

Изменчивость, обусловленную возникновением мутаций, называют мутационной, а обусловленную дальнейшей рекомбинацией генов в результате скрещивания комбинативной.

Билет №24

1. Образование половых клеток у животных. Мейоз.

Образование половых клеток у животных. Процесс образования половых клеток называют гаметогенезом (от гамета и греч. генезис - рождение). У животных гаметы образуются в половых органах: в семенниках у самцов и яичниках у самок.

Гаметогенез протекает последовательно, в три стадии в соответствующих зонах и заканчивается формированием сперматозоидов и яйцеклеток. На стадии размножения первичные половые клетки интенсивно делятся митозом, что значительно увеличивает их число. На следующей стадии роста клетки растут, запасают питательные вещества. Этот период соответствует интерфазе перед мейозом. Далее клетка переходит в стадию созревания, где происходит мейоз, образуются клетки с одинарным набором хромосом, окончательно формируются и созревают гаметы.

Мейоз - такое деление клетки, при котором хромосомный набор во вновь образующихся дочерних клетках уменьшается вдвое.

2. Приспособленность организмов, как результат революции.

Приспособленность организмов. Живые организмы удивительно приспособлены к условиям окружающей среды. Каждый вид занимает определенное место в природе и находится в сложных и, как правило, гармоничных взаимоотношениях с условиями обитания. При рассмотрении примеров действия естественного отбора вы убедились, что все закрепляющиеся в ходе эволюции особенности строения, функционирования, поведения организмов представляют собой те или иные приспособления, или адаптации. Приспособленный организм характеризуется жизнеспособностью, конкурентоспособностью и фертильностью.

Билет №25

1. Сравнительная характеристика природных экосистем и агроэкосистем.

Природная экосистема - луг.
1) имеет большое видовое разнообразие
2) Длинные и разветвленные цепи и сети питания
3) Не зависит от человека
4) Замкнутый круговорот веществ
Агроэкосистема - пшеничное поле.
1) низкое видовое разнообразие, преобладание монокультуры
2) Короткие цепи питания
3) Зависит от человека
4) Незамкнутый круговорот веществ, часть веществ изымается человеком во время урожая

2. Основные направления развития биотехнологии.

Биотехнология - целенаправленное использование биологических объектов и процессов в разных отраслях производства: медицине, охране природы.

Микроорганизмы, клетки растений, животных - основные объекты биотехнологии. Производство человеком с давних времен сыра, хлебопечение, виноделие, выделка кож на основе использования микроорганизмов.

Выращивание бактерий, низших грибов, дрожжей на специальных питательных средах в стерильных условиях, при определенной температуре, реакции среды с целью повышения интенсивности их размножения, ускорения производства витаминов, ферментов, белков, антибиотиков, лимонной, уксусной кислот.

Генная инженерия - направление биотехнологии, в основе которого лежит пересадка генов от одного организма к другому, получение организмов с новыми свойствами. Создание с помощью пересадки генов новых сортов растений с ценными для человека признаками, например устойчивого к колорадскому жуку картофеля, высокоурожайных сортов сои и других растений.

Возможность пересадки генов человека в клетки микроорганизмов с целью синтеза ими ценных для человека ферментов, гормонов, например инсулина, необходимого больным сахарным диабетом.

© 2024 Сайт по саморазвитию. Вопрос-ответ