Вконтакте Facebook Twitter Лента RSS

Понятие генетической информации, её передача. Наследственная информация: хранение и передача

  1. ДНК – матрица синтеза белков
  2. Удвоение ДНК. Ход образования и-РНК.
  3. Генетический код и его свойства.

1. ДНК - матрица для синтеза белков . Каким же образом в эритроцитах здорового человека образуются миллионы идентич­ных молекул гемоглобина, как правило, без единой ошибки в расположении аминокислот? Почему в эритроцитах больных серповидноклеточной анемией все молекулы гемоглобина имеют од­ну и ту же ошибку в одном и том же месте?

Для ответа на эти вопросы обратимся к примеру с книго­печатанием. Учебник, который вы держите в руках, издан ти­ражом п экземпляров. Все п книг отпечатаны с одного шаб­лона - типографской матрицы, поэтому они совершенно оди­наковы. Если бы в матрицу вкралась ошибка, то она была бы воспроизведена во всех экземплярах. Роль матрицы в клетках живых организмов выполняют молекулы ДНК. ДНК каждой клетки несет информацию не только о структурных белках, оп­ределяющих форму клетки (вспомните эритроцит), но и о всех белках-ферментах, белках-гормонах и других белках.

Углеводы и липиды образуются в клетке в результате слож­ных химических реакций, каждая из которых катализируется своим белком-ферментом. Владея информацией о ферментах, ДНК программирует структуру и других органических соедине­ний, а также управляет процессами их синтеза и расщепления.

Поскольку молекулы ДНК являются матрицами для синтеза всех белков, в ДНК заключена информация о структу­ре и деятельности клеток, о всех при­знаках каждой клетки и организма в целом.

Каждый белок представлен одной или несколькими полимерными цепями. Уча­сток молекулы ДНК, служащий матри­цей для синтеза одной полипептидной це­пи, т. е. в большинстве случаев одного белка, называют геном. Каждая молеку­ла ДНК содержит множество разных ге­нов. Всю информацию, заключенную в молекулах ДНК, называют генетической. Идея о том, что генетическая информа­ция записана на молекулярном уровне и что синтез белков идет по матричному принципу, впервые была сформулирова­на еще в 20-х годах выдающимся отече­ственным биологом Н. К. Кольцовым.



2. Удвоение ДНК. Молекулы ДНК обла­дают поразительным свойством, не при­сущим ни одной другой из известных мо­лекул, - способностью к удвоению. Что представляет собой процесс удвоения? Вы помните, что двойная спираль ДНК по­строена по принципу комплементарности. Этот же принцип лежит в основе удвоения молекул ДНК. С помо­щью специальных ферментов водородные связи, скрепляющие нити ДНК, разры­ваются, нити расходятся, и к каждому нуклеотиду каждой из этих нитей после­довательно пристраиваются комплемен­тарные нуклеотиды. Разошедшиеся нити исходной (материнской) молекулы ДНК являются матричными - они задают по­рядок расположения нуклеотидов во вновь синтезируемой цепи. В результате действия сложного набора ферментов про­исходит соединение нуклеотидов друг с другом. При этом образуются новые ни­ти ДНК, комплементарные каждой из ра­зошедшихся цепей. Таким об­разом, в результате удвоения создаются две двойные спирали ДНК (дочерние молекулы), каждая из них имеет одну нить, полученную от материнской молекулы, и одну нить, син­тезированную вновь.

Дочерние молекулы ДНК ничем не отличаются друг от дру­га и от материнской молекулы. При делении клетки дочерние молекулы ДНК расходятся по двум образующимся клеткам, каждая из которых вследствие этого будет иметь ту же инфор­мацию, которая содержалась в материнской клетке. Так как гены - это участки молекул ДНК, то две дочерние клетки, об­разующиеся при делении, имеют одинаковые гены.

Каждая клетка многоклеточного организма возникает из од­ной зародышевой клетки в результате многократных делений, поэтому все клетки организма имеют одинаковый набор генов. Случайно возникшая ошибка в гене зародышевой клетки будет воспроизведена в генах миллионов ее потомков. Вот почему все эритроциты больного серповидноклеточной анемией имеют оди­наково «испорченный» гемоглобин. Дети, больные анемией, по­лучают «испорченный» ген от родителей через их половые клет­ки. Информация, заключенная в ДНК клеток (генетическая информация), передается не только из клетки в клетку, но и от родителей к детям. Ген является единицей генетической, или наследствен­ной, информации.

Трудно, глядя на типографскую матрицу, судить о том, хо­рошая или плохая книга будет по ней напечатана. Невозможно судить и о качестве генетической информации по тому, «хоро­ший» или «плохой» ген получили потомки по наследству, до тех пор, пока на основе этой информации не будут построены белки и не разовьется целый организм.

Ход образования и-РНК. К рибосомам, местам синтеза бел­ков, из ядра поступает несущий информацию посредник, спо­собный пройти через поры ядерной оболочки. Таким посредни­ком является информационная РНК (и-РНК). Это одноцепочечная молекула, комплементарная одной нити молекулы ДНК. Специальный фермент - полимераза, двигаясь по ДНК, подбирает по принципу комплементарности нуклеотиды и со­единяет их в единую цепочку (рис. 21). Процесс образования и-РНК называется транскрип­цией (от лат. «транскрипцио» - переписывание). Если в нити ДНК стоит тимин, то полимераза включает в цепь и-РНК аденин, если стоит гуанин - включает цитозин, если аденин - то урацил (в состав РНК не входит ти­мин).

По длине каждая из молекул и-РНК в сотни раз короче ДНК. Ин­формационная РНК - копия не всей молекулы ДНК, а только час­ти ее, одного гена или группы ря­дом лежащих генов, несущих ин­формацию о структуре белков, не­обходимых для выполнения од­ной функции. У прокариот такая группа генов называется опероном. В начале каждой группы генов находится своего рода поса­дочная площадка для полимеразы, называемая промотором. Это специфическая последовательность нуклеотидов ДНК, которую фермент «узнает» благодаря химическому сродству. Только при­соединившись к промотору, полимераза способна начать синтез и-РНК. В конце группы генов фермент встречает сигнал (в ви­де определенной последовательности нуклеотидов), означающий конец переписывания. Готовая и-РНК отходит от ДНК, покида­ет ядро и направляется к месту синтеза белков - рибосоме, рас­положенной в цитоплазме клетки.

В клетке генетическая информация передается благодаря транскрипции от ДНК к белку:

ДНК-и-РНК-белок.

3. Генетический код - определенные сочетания нуклеотидов, несущих информацию о структуре белка, и последовательность их расположения в молекуле ДНК.\

Ген - участок молекулы ДНК, несущий информа­цию о структуре одной молекулы белка.

Свойства генетического кода:

- триплетность - одна аминокислота кодиру­ется тремя рядом расположенными нуклеотидами - триплетом, или ко доном;

- универсальность - код един для всего живу­щего на Земле (у мха, сосны, амебы, человека, страуса и пр. одни и те же триплеты кодируют одни и те же аминокислоты);

- вырожденность - одной аминокислоте может со­ответствовать несколько триплетов (от двух до шести). Исключение составляют аминокислоты метионин и трип­тофан, каждая из которых кодируется только одним трип­летом (метионин кодируется триплетом АУГ);

- специфичность - каждый триплет кодирует только одну аминокислоту.

Триплеты ГАА или ГАГ, занимающие шестое место в гене здоровых людей, несут информацию о цепи гемо­глобина, кодируя глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид заменен на У, а триплеты ГУА и ГУГ кодируют валин;

- неперекрываемость - кодоны одного гена не мо­гут одновременно входить в соседний;

- непрерывность - в пределах одного гена счи­тывание генетической информации происходит в од­ном направлении.

Наследственная информация клетки в виде ДНК обычно сосредоточена в хромосомах (хроматине), а РНК - в хроматине, ядрышке, нуклеоплазме, цитоплазме и рибосомах. Содержание ДНК в ядре каждой клетки данного вида есть величина постоянная, не зависящая ни от питания клетки, ни от скорости ее роста, ни от других внешних условий. К моменту деления клетки количество ДНК точно удваивается и после деления вновь снижается до начального уровня. Количество РНК в клетках зависит от скорости роста и интенсивности процесса биосинтеза в них.[ ...]

Наследственная информация - см. дезоксирибонуклеиновая кислота.[ ...]

Материнская наследственность определяется суммой факторов, к которым относятся: материнская часть комплекса генов хромосом ядра (генома) зародыша, наследственная информация цитоплазмы (плазмона)-внехромосомные наследственные элементы клетки - ферментативные системы ооцита, обмен веществ между плодом и матерью, питание потомков материнским молоком и др, Эти факторы оказывают большое влияние на формирование, осуществляя роль воспитателя (ментора). Для беременных маток необходимо создание хороших условий кормления и содержания. У эмбриона крупного рогатого скота в первые 3 месяца очень интенсивно развиваются внутренние органы, мягкие ткани, эндокринная система, в возрасте 4-5 месяцев скорость роста их снижается, но быстрее начинает расти костяк. Недокорм матери в эти периоды Приводит к недоразвитию органов и тканей, хорошее же кормление, наоборот, усиливает их рост.[ ...]

Генетическая информация - наследственная информация, закодированная в молекулах ДНК или РНК.[ ...]

Как известно, наследственная информация организмов концентрируется в половых клетках в особых образованиях - хромосомах в виде нуклеиновых кислот (ДНК и РНК). Молекулы этих кислот или их отдельные участки и называют генами. Совокупность всех генов,- определяющих наследственные признаки, является генотипом, а совокупность всех особей, хранящих и передающих по наследству эту информацию потомкам, представляет собой генетический фонд, или генофонд.[ ...]

Вероятно, что в передаче наследственной информации, как и в химической сигнализации, также используется расслоение-фазовый переход в жидкости. Вблизи критической точки расслоения прекращаются броуновское движение и диффузионный маосоперенос. Особенности связанной воды как одного из компонентов расслаивающихся растворов допускают принципиальную возможность ауторегуляции критических условий в сложных многокомпонентных системах, благодаря чему может быть достигнут характерный для автоматических устройств высокий уровень организации химических взаимодействий между компонентами раствора.[ ...]

Мутация - любое изменение наследственной информации организма, записанной в молекулах нуклеиновых кислот.[ ...]

Молекулярные оспоиы хранения и реализации наследственной информации.[ ...]

Дезоксирибонуклеиновая кислота (ДНК) - иначе наследственная информация - вещество, находящееся в головке спермия, содержащее в себе гены - основу наследственных свойств животного.[ ...]

Генотип совокупность генов организма - единиц наследственной информации.[ ...]

В ядре хранится наследственная информация, заключенная в специфических структурах ДНК, оно также регулирует все жизненные процессы в клетке. Все клетки одного организма тотнпотентны. Биотехнология успешно реализует это свойство при получении обеззараженного посадочного материала, производстве активных химических веществ и клеточной селекции. С ядерной мембраной свя- зана эндоплазматическая сеть (э.п.с.). Ограниченные мембранами каналы з. и. с. пронизывают всю цитоплазму и проникают в соседние клетки через плазмодесмы. Функции,з. п. с. - транспорт веществ и передача сигналов. На поверхности гранулярной, или шероховатой, э. п. с. располагаются «фабрики белка» - рибосомы, состоящие из белка и РНК, длина которых варьирует в пределах 10.. .30 нм.[ ...]

При дифференцировке, несмотря на сохранение всей наследственной информации, клетки утрачивают способность к делению. При этом чем больше специализирована клетка, тем труднее изменить (а иногда невозможно) направление ее дифференцировки, что определяется ограничениями, накладываемыми на нее организмом в целом.[ ...]

Как при геномных, так и при хромосомных мутациях нарушения в наследственном материале клетки заключаются, главным образом, в изменении количества биологической информации и связанном с этим дисбалансе генов. Собственно новой биологической информации при этих видах наследственной изменчивости не появляется. Б связи с этим такие мутации имеют меньшее эволюционное значение, чем генные, при которых появляется качественно новая наследственная информация.[ ...]

Генотип - комплекс всех генов организма, содержащий его полную наследственную информацию. В состав генотипа входит совокупность генов, полученных растением от его родителей, а в случае мутаций - также и новые мутантные гены, которых не было у родителей.[ ...]

Мутагенные вещества при воздействии на организм вызывают изменение наследственной информации. Это радиоактивные вещества, марганец, свинец и т.д.[ ...]

Основные функции клеточного ядра - сохранение, передача и реализация наследственной информации, а также регуляция большинства функций клетки. В состав ядерного вещества любой клетки входит ДНК, которая служит носителем наследственной информации, передающейся в поколениях. Относительное содержание ДНК в ядре находится в прямой зависимости от степени пло-идности организма.[ ...]

ГЕНЕТИЧЕСКИЙ КОД - свойственная живым организмам единая система записи наследственной информации в молекулах нуклеиновых кислот (ДНК и РНК) в виде последовательности нуклеотидов.[ ...]

Комплекс функций организма, направленных на воспроизводство потомства и передачу наследственной информации, называют репродуктивной функцией. При интоксикации химическими веществами репродуктивная функция организма может нарушаться как в результате мутагенного действия этих веществ на половые и соматические клетки организма, так и в результате прямого (или опосредованного) воздействия химических веществ на эмбриональное развитие особей нового поколения.[ ...]

Клетки упомянутых очагов меристемы у села-гипеллы способны к различной реализации наследственной информации в разных конкретных условиях. Они могут дать начало не только корню, но и побегу. Направленность развития этих очагов меристемы определяется балансом гормонов в теле растения; существенную роль при этом играет ауксин. В естественных условиях очаги меристемы на брюшной стороне побега образуют корни, на спинной - появляющиеся несколько позже облиственные побеги.[ ...]

ГЕНОФОНД, или генетический фонд [от гр. genos - род, происхождение и лат. fondus - основание] - наследственная информация, заключенная в совокупности генов к.-л. группы особей. Иногда под Г. понимается вся совокупность видов живых организмов. См. также Разнообразие биологическое.[ ...]

На смену пришел совершенно новый механизм - молекулярная память, генетический код, передача наследственной информации. Для эволюции это был огромный выигрыш, так как вместо бесконечно долгого индивидуального существования появился тот баланс наследственности и ее изменчивости, благодаря которому стало быстро расти разнообразие органических форм. Но опять за эти драгоценные механизмы отбора и эволюции пришлось дорого заплатить: была утрачена высокая метаболическая устойчивость клеток.[ ...]

Агрессивные экологические факторы повреждают хромосомы и вызывают мутации в генах, искажают наследственную информацию, в результате чего «больные» клетки начинают безудержно делиться. При этом раковые клетки не уничтожаются иммунной системой, предварительно ослабленной теми же негативными экологическими факторами.[ ...]

Таким образом, в жизни клетки важнейшее значение имеет триада ДНК - РНК - белок. Надо сказать, что у ряда организмов (вирусы, некоторые бактерии) наследственную информацию несет РНК, а не ДНК. Наконец, есть вирусы, у которых имеется обратная последовательность: на молекуле РНК строится ДНК, которая переносит информацию. Процесс носит название обратной транскрипции.[ ...]

Биологическое значение оплодотворения состоит в том, что при слиянии гамет восстанавливается диплоидный набор хромосом, а новый организм несет наследственную информацию и признаки двух родителей. Это увеличивает разнообразие признаков организмов, повышает их жизнестойкость.[ ...]

Благодаря самовоспроизведению молекул ДНК эта программа при делении материнской клетки передается дочерним. Таким образом, процесс авторепродукции лежит в основе наследственности. Молекулы ДНК, входящие в состав хромосом клеточного ядра или образующие ядерные элементы бактерий, служат аппаратом хранения наследственной информации и ее передачи от материнской клетки дочерним. Наследственная информация дробна. Она состоит из отдельных единиц информации - генов. Геном называется участок молекулы ДНК, определяющий развитие наследственного признака. Непосредственное действие отдельного гена заключается в программировании синтеза определенного белка - фермента, который в свою очередь катализирует одну из биохимических реакций. Цепь, ведущая от гена к наследственному признаку, следовательно, состоит из ряда звеньев: ген (участок молекулы ДНК) - и-РНК- белок (фермент) биохимическая реакция ->■ наследственный признак.[ ...]

Спермий (иначе сперматозоид, живчик) - высокоспециализированная клетка, отличающаяся рядом особенностей от обычных «соматических» клеток. Его головка содержит ядро - склад наследственного вещества (иначе «наследственной информации») и акрозому. Прочие три части - шейка, тело и хвост - образуют единую моторную систему спермия.[ ...]

Причиной многих хромосомных перестроек может быть неравноценный кроссинговер (дупликация и делеция). При хромосомных аберрациях нарушение структуры хромосомы приводит, с одной стороны, к изменению количества наследственной информации в генотипе, при котором нарушается сбалансированность по дозам отдельных генов, например увеличение доз генов при дупликации или транслокации и уменьшение - при делеции. С другой стороны, может измениться морфология хромосом, появляются кольцевые, полицентрические хромосомы. Это приводит к нарушению считывания информации, оставшейся в составе хромосом, а также к нарушению их расхождения при делении клеток. Кроме того, при хромосомных аберрациях возможно нарушение взаимодействия генов по типу «эффекта положения». Конечным результатом таких нарушений являются серьезные и множественные аномалии развития. Например, у человека делеция короткого плеча одной из хромосом группы В приводит к развитию аномалии, известной как синдром «кошачьего крика».[ ...]

Половое размножение - это образование нового организма при участии двух родительских особей. При половом размножении происходит слияние половых клеток - гамет мужского и женского организма. Новый организм несет наследственную информацию от обоих родителей. Половые клетки формируются в результате особого типа деления. В этом случае в отличие от клеток взрослого организма, которые несут диплоидный (двойной) набор хромосом, образующиеся гаметы имеют гаплоидный (одинарный) набор. В результате оплодотворения парный, диплоидный набор хромосом восстанавливается. Одна хромосома из пары является отцовской, а другая - материнской. Гаметы образуются в половых железах или в специализированных клетках в процессе мейоза.[ ...]

Фосфорилирование - ферментативное присоединение остатка фосфорной кислоты к какому-либо органическому соединению Хромосомы - структурные единицы клеточного ядра, содержащие ДНК см. п белки; в их ДНК закодирована наследственная информация цАМФ - циклическая АМФ (см. АДФ и АМФ), в которой фосфорная кислота соединена с рибозой двумя гидроксильными группами, образуя кольцо; один из важных регуляторов обмена веществ Цитоплазма - жидкое белковое содержимое клеток, в котором расположены их органоиды см.[ ...]

РЕПЛИКАЦИЯ [от лат. replicare - обращать назад, отражать], или ауторепродукция - создание себе подобной структуры; в молекулярной генетике - синтез на каждой из нитей молекулы дезоксирибонуклеиновой кислоты (ДНК) парной ей нити; Р. лежит в основе передачи наследственной информации от клетки к клетке и от поколения к поколению. РЕПРЕЗЕНТАТИВНОСТЬ ДАННЫХ [от фр. representadf- показательный] - свойство экспериментальных данных, натурных наблюдений, выборок, проб, изъятых из природной среды, быть объективными критериями реальных процессов и явлений. РЕПРОДУКТИВНЫЙ ПОТЕНЦИАЛ - см. Биотический потенциал. РЕПРОДУКЦИЯ [от лат. re - приставка, означающая повторность действия, и productio - производство, произведение] - в биологии самовоспроизведение, размножение, производство потомства. Величина популяционной Р. определяется числом потомков на одну самку. См. Фертильность. РЕСУРСОВОСПРОИЗВОДЯЩИЕ ФУНКЦИИ ЛАНДШАФТА - см. в ст. Функции ландшафта социально-экономические.[ ...]

НАСЕЛЕНИЕ - в широком смысле совокупность живых организмов, обитающих на Земле или в пределах конкретной территории. Термин чаще используется применительно к животным (животное Н.)- Аналог для растений растительность; для человека - народонаселение. НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ - см. Ггнетическая информация, Наследственность. НАСЛЕДСТВЕННОСТЬ - 1) способность организмов передавать свои признаки потомству; 2) признак и/ или свойство, полученное потомством от родителей в проявившейся или скрытой форме. Н. - одно из основных свойств живых существ. НАСТ - ледяная корка на снегу, образующаяся при похолодании после оттепели или дождя.[ ...]

Одним из наиболее важных свойств живых систем, наряду с возбудимостью и ауторегуляцией, является способность к репродукции, т. е. к воспроизведению себе подобной из более простых веществ окружающей среды. Эта способность предполагает исключительно точную передачу наследственной информации с помощью специального матричного аппарата, позволяющего получить идентичные оригиналу копии больших молекул, содержащих «план» построения целого организма и всех его частей. Хотя детали механизма редупликации (копирования) хорошо изучены, остается невыясненной природа его необычной устойчивости по отношению, к нивелирующему влиянию броуновского движения..[ ...]

Подводя итоги, можпо сказать: нз поколения в поколение каждого организма передаются специфические молекулы ДНК, которые несут в себе план построения белковых молекул. План построения белка записан в ДНК с помощью кода, представленного чередованием азотистых оснований. Участок ДНК, в котором закодирована информация для построения ’одного белка, носит название ген. Геном - это сочетание всех генов организма. ДНК в процессе эволюции может претерпевать случайные изменения. Среди этих изменений, которые передаются по наследству, могут возникать полезные, дающие организмам преимущество в борьбе за существование. Эти изменения сохраняются естественным отбором. Новые комбинации, новые сочетания генов, новый геном создается также в процессе скрещивания. Наследственная информация реализуется путем образования белков, специфичных для каждого организма.[ ...]

Пол - совокупность свойств, определяющих направленность бисексуальной потенции к развитою половых клеток, органов, цветков, растений в сторону формирования мужского или женского типа. Пол находит выражение в формировании растений, цветков или их элементов, обеспечивающих вос-произведепие потомства и передачу ему наследственной информации путем полового размножения.[ ...]

Бактериальные ДНК - это высокополимерные соединения, состоящие из большого числа нуклеотидов - полинуклеотиды с молекулярным весом около 4 млн. Молекула ДНК представляет собой цепь нуклеотидов, где расположение их имеет определенную последовательность. В последовательности расположения азотистых оснований закодирована генетическая информация каждого вида. Нарушение этой последовательности возможно при естественных мутациях или же под влиянием мутагенных факторов. При этом микроорганизм приобретает или утрачивает какое-либо свойство. У него наследственно изменяются признаки, т. е. появляется новая форма микроорганизма. У всех микроорганизмов - прокариотов и эукариотов - носителями генетической информации являются нуклеиновые кислоты - ДНК и РНК. Лишь некоторые вирусы представляют собой исключение: у них ДНК отсутствует, а наследственная информация записана или отражена только в РНК.[ ...]

Таким образом, в органическом мире Земли можно выделить несколько крупных групп существ, имеющих общее происхождение, доказываемое наличием фундаментальных черт сходства в строении представителей. К таким чертам относятся: конвариан-тная редупликация, обмен веществ, способность к росту и развитию (онтогенез), общность механизмов реализации наследственной информации от гена до признака (рис. 2.15).[ ...]

Живая система при всей сложности ее организации состоит из биологических макромолекул: нуклеиновых кислот (ДНК и РНК), белков, полисахаридов, а также других важных органических веществ. Следует подчеркнуть, что именно с молекулярного уровня начинаются разнообразные и чрезвычайно сложные процессы, лежащие в основе жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и другие.[ ...]

Изменчивость - свойство растений уклоняться в своих признаках и особенностях индивидуального развития от родительских форм. Различают изменчивость генотипическую, вызванную изменениями генных и хромосомных структур - мутациями или же возникающую в результате новой комбинации родительских генов в дочернем организме, и фенотипическую - моди-фикационную изменчивость проявления генов при реализации наследственной информации в разных внешних условиях.[ ...]

Однако жизнь - в первую очередь не структура, а процесс. Это постоянное обновление всех структур клетки и организма в целом. Все вещества, из которых построен организм и которые он вырабатывает, постоянно обновляются. Так, полупериод жизни некоторых выделяемых железами внутренней секреции гормонов составляет 1 - 5 мин, сахара в крови - 19 мин, гликогена в печени - 20-24 ч, гликогена в мышцах - 3-4 сут, белка в печени - 4-10, резервного жира - 16-20, а сократительных белков мышц - около 30 сут. Относительно стабильной является лишь хранящая наследственную информацию ДНК.[ ...]

Целостность (непрерывность) и дискретность (прерывность). Жизнь целостна и в то же время дискретна как в плане структуры, так и функции. Например, субстрат жизни целостен, т. к. представлен нуклеопротеидами, но в то же время дискретен, т. к. состоит из нуклеиновой кислоты и белка. Нуклеиновые кислоты и белки являются целостными соединениями, однако тоже дискретны, состоя из нуклеотидов и аминокислот (соответственно). Репликация молекул ДНК является непрерывным процессом, однако она дискретна в пространстве и во времени, т. к. в ней принимают участие различные генетические структуры и ферменты. Процесс передачи наследственной информации тоже является непрерывным, но он дискретен, т. к. состоит из транскрипции и трансляции, которые из-за ряда различий между собой определяют прерывность реализации наследственной информации в пространстве и во времени. Митоз клеток также непрерывен и одновременно прерывен. Любой организм представляет собой целостную систему, но состоит из дискретных единиц - клеток, тканей, органов, систем органов. Органический мир также целостен, поскольку существование одних организмов зависит от других, но в то же время он дискретен, состоя из отдельных организмов.[ ...]

Когда воздействие выходит за границы толерантной области, то для сохранения интактности живой системы быстрые адаптивные перестройки в пределах возможности гомеостатических механизмов оказываются недостаточными. Включается более "высокий" механизм адаптации, сопряженный с репрессией одних и активацией других генов. Этот приспособительный акт называют акклимацией, или акклиматизацией. Для его завершения требуется больше времени, чем для осуществления гомеостатических перестроек. На реализацию предсущест-вующих программ генома при акклимации клетка затрачивает часы и даже дни.Самой медленной является эволюционная адаптация, которая осуществляется в результате накопления в геноме новой наследственной информации в течение многих поколений.[ ...]

Симптомами лучевой болезни первой степени являются слабость, головные боли, нарушение сна и аппетита, которые усиливаются на второй стадии заболевания, но к ним дополнительно присоединяются нарушения в деятельности сердечно-сосудистой системы, изменяется обмен веществ и состав крови, происходит расстройство пищеварительных органов. На третьей стадии болезни наблюдаются кровоизлияния и выпадение волос, нарушается деятельность центральной нервной системы и половых желез. У людей, перенесших лучевую болезнь, повышается вероятность развития злокачественных опухолей и заболеваний кроветворных органов. Лучевая болезнь в острой (тяжелой) форме развивается в результате облучения организма большими дозами ионизирующих излучений за короткий промежуток времени. Опасно воздействие на организм человека и малых доз радиации, так как при этом могут произойти нарушение наследственной информации человеческого организма, возникнуть мутации1.

Уральский институт экономики, управления и права

Курганский филиал

Реферат

по предмету: Концепция современного естествознания

на тему: Генетическая информация

Работу выполнила:

Студентка 1 курса

Заочного отделения

Работу проверила:

Курган 2010

Введение……………………………………………………….…3

1 Молекула ДНК…………………………………………………………...4

2 Генетический код………………………………………………….…….8

3 Программа «Геном человека»……………………………………….….9

4 Генетическая инженерия……………………………………………….10

5 Клонирование животных……………………………………………….13

Заключение………………………………………………………16

Список литературы………………………………………..…….17

ВВЕДЕНИЕ.

Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.
Генетическая информация определяет морфологическое строение,
рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Современная биология утверждает, что одна из главных черт жизни - это самовоспроизводимость. Самовоспроизводимость - это способность живого организма к размножению, рождению и выращиванию себе подобных.
Как известно, генетическая (наследственная) информация записана в цепи молекулы ДНК в виде последовательности более простых молекул - нуклеотидных остатков, содержащих одно из четырех оснований: аденин (А), гуанин (G) - пуриновые основания, цитозин (С) и тимин (Т) - пиримидиновые основания.

1. МОЛЕКУЛА ДНК.

Структура молекулы ДНК была изучена в 1953 г. Дж.Уотсоном и Ф.Криком. Они установили, что молекула ДНК состоит из двух цепей, образующих двойную спираль, которая закручена вправо (по часовой стрелке). К полимерному остову спиральной цепи ДНК (состоит из чередующихся остатков фосфата и сахара дезоксирибозы) "прикреплены" нуклеотидные остатки. Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение). Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию. Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Цепи ДНК - комплементарны, т.е. имеется взаимное соответствие между их нуклеотидами, которые образуют уотсон-криковские пары Г-Ц и А-Т. Сами же цепи в двойной спирали антипараллельны.

Схематический вид молекулы ДНК

Итак, напомним, что в основе самовоспроизводства лежит способность молекулы ДНК к удвоению, которое называется репликацией ДНК. Репликация ДНК основана на принципе комплементарности, что хорошо иллюстрируется схемой.

Удвоение молекулы ДНК.

В живой клетке удвоение происходит потому, что две спиральные цепи расходятся, а потом каждая цепь служит матрицей, на которой с помощью особых ферментов собирается подобная ей новая спиральная цепь ДНК. В результате вместо одной ДНК образуются две, неотличимые по строению от родительской молекулы ДНК.

Репликация ДНК.

В результате создаются две двойные спирали ДНК (дочерние молекулы), каждая из которых имеет одну нить, полученную из материнской молекулы, и одну нить, синтезированную по комплементарному принципу.
Теперь обсудим, как происходит передача информации в клетке. Напомним, что участок молекулы ДНК, служащий матрицей для синтеза одного белка, называется геном. Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет двумя путями: - по каналу прямой связи (ДНК - РНК - белок); и по каналу обратной связи (среда - белок - ДНК).
Синтез белка происходит в рибосомах клетки. К ним из ядра поступает информационная (или матричная) РНК (иРНК), которая может проникать через порог ядерной мембраны. Что же такое
иРНК ?
иРНК это: .
а) одноцепочечная молекула, комплементарная одной нити ДНК; .
б) копия ДНК; .
в) копия не всей молекулы ДНК, а лишь ее части (по длине). Эта часть соответствует одному или группе рядом лежащих генов;
г) молекула, образованная под действием специального фермента - РНК-полимеразы, которая, продвигаясь по нити ДНК, ведет синтез иРНК; данный процесс называется транскрипцией.

Как определяется длина части ДНК, с которой снимается копия в виде иРНК?

В начале этой части и в ее конце находятся специфические последовательности нуклеотидов, которые может "узнавать" РНК-полимераза и таким образом "определять" участок считывания.
Весь процесс репликации, осуществляемый разными белками-ферментами, очень согласован, поэтому часто употребляют термин - работа "репликационной машины". Репликация идет с очень высокой точностью. ДНК млекопитающего состоит из 3 млрд. пар нуклеотидов, а в процессе воспроизведения допускается не более 3 ошибок.
При этом надо помнить, что синтез идет с большой скоростью - от 50 до 500 нуклеотидов/сек, поэтому в клетке существуют специальные корректирующие механизмы: ДНК-полимеразы дважды проверяют соответствие нуклеотидов исходной матрице. .
Итак, в процессе синтеза белка иРНК, пройдя через ядерную мембрану, поступает в цитоплазму к рибосомам, где осуществляется:

а) расшифровка генетической информации,

б) синтез из аминокислот биополимерной макромолекулы белка.

Аминокислоты доставляются к рибосомам с помощью транспортных РНК (тРНК). В клетке имеется столько аминокислот, сколько типов кодонов, шифрующих аминокислоты.

2. ГЕНЕТИЧЕСКИЙ КОД.

Генетическая информация заключена в последовательности нуклеотидов. Это значит, что строго определенная последовательность нуклеотидов соответствует определенной аминокислоте, а определенный порядок расположения и количество аминокислот соответствует, в свою очередь, определенной структуре белка. .
Таким образом, иРНК несет генетическую информацию в виде генетического кода, который с помощью четырех символов (четыре нуклеотида А, Г, Ц, У) задает любую из 20 аминокислот.
Свойства генетического кода: .
а) Код триплетен.
Каждая из 20 аминокислот зашифрована последовательностью 3-х нуклеотидов. Эта последовательность называется кодоном.
б) Код вырожден.
Каждая аминокислота кодируется более, чем одним кодоном (от 2 до 6 кодонов на одну аминокислоту). .
в) Код однозначен.
Каждый кодон соответствует только одной аминокислоте.

г) Генетический код универсален , т.е. един для всех живых организмов планеты.

Таким образом, ген представляет собой чередование "слов из трех букв" - кодонов, образованных из четырехбуквенного алфавита.

Необходимо особо подчеркнуть универсальность генетического кода - с его помощью закодирована вся информация и о простейшем одноклеточном организме, и о человеке. Но в первом случае можно было обойтись и более простым кодом, а во-втором - лучше было бы использовать более совершенный (сложный) код. Поэтому единство генетического кода служит очень весомым аргументом в пользу единого эволюционного пути всего живого на Земле.


3. ПРОГРАММА «ГЕНОМ ЧЕЛОВЕКА»

Международная программа "Геном человека" посвящена решению проблемы картирования генов человека. Число генов в составе ДНК человека - около 50-60 тысяч, что составляет только 3% общей длины ДНК; роль остальных 97% пока неясна. В каждой клетке человека содержится 46 молекул ДНК, которые распределены в 23 парах хромосом. Хромосомы - это структуры, по которым распределена полная молекула ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке человека равна около 2 метров. Полная же длина всех молекул ДНК в теле взрослого человека, состоящего из 5х10 13 клеток, составляет 10 11 км, что в тысячу раз превышает расстояние от Солнца до Земли. .
К настоящему времени практически полностью расшифрована полная последовательность ДНК человека. .
Главная задача исследований - изучить вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить генетические различия между ними. Анализ таких различий позволит построить индивидуальные генные портреты людей, что даст возможность лучше лечить болезни. Кроме того, такой анализ позволит выявить различия между популяциями и выявить географические районы повышенного риска поражения генома людей. Таким образом, благодаря геномным исследованиям стало ясно, что в ходе эволюции жизни на Земле сначала выделились представители архей, имеющих клетки без ядер, а позже - эукариот (состоящих из клеток с ядрами), включая человека. Геномными исследованиями было выявлено также совпадение нуклеотидных последовательностей у неродственных видов. Это дает основания предположить, что в процессе эволюции происходил перенос генов от одного вида к другому. Например, оказалось, что геномы человека и мыши весьма близки - их нуклеотидные последовательности совпадают более чем на 90%.

4. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ.

"Генетическая или генная инженерия" - создание новых генетических структур и создание организмов с новыми наследственными свойствами. С помощью биохимических и генетических методик происходит изменение хромосомного материала - основного наследственного вещества клеток. Биоинженеры изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. .
Генная инженерия принципиально отличается от классической селекции по следующим пунктам: .
1) Можно (нельзя) скрещивать неродственные виды; .
2) Можно (нельзя) извне управлять процессом рекомбинации в организме (постоянство своего генетического состава организм очень надежно охраняет);
3) Можно (нельзя) предугадать, какое получится потомство.
Ученым было необходимо разработать методику введения гена в клетку. Причём нужно было научиться не просто вводить ген в цитоплазму, а встраивать его в собственную молекулу ДНК клетки, так, чтобы новая информация могла быть "прочитана" биосинтетическим аппаратом клетки, вырабатывающим белки, а также воспроизводящим гены при делении клетки. Новый ген (или его фрагмент) должен очень точно располагаться в ДНК с соблюдением ряда условий, для того чтобы клетка действительно начала синтезировать новые ферменты. Надо было также обойти сопротивляемость клетки-хозяина: как правило, все изменения генетического аппарата воспринимаются клеткой как "ошибки информации" и исправляются специальными механизмами. .
(Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать "свой" белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку.)
Важное открытие - обнаружение в бактериальных клетках, помимо главной ее хромосомы, внехромосомных кольцевых молекул ДНК - плазмид. Плазмиды можно извлечь из одной клетки и перенести в другую. Плазмиды можно разрезать, фрагменты сращивать друг с другом, а затем такие комбинированные плазмиды вводить в клетки. Поскольку плазмидная ДНК представляет собой замкнутую кольцевую молекулу, кольцо нужно сперва разорвать таким образом, чтобы свободные концы были в химическом отношении реакционноспособными, пригодными для последующего соединения. Достичь этого удается либо простым механическим путем (например, сильным встряхиванием), либо с помощью различных ферментов, называемых нуклеазами (рестриктазами) . Затем фрагменты ДНК соединяют с помощью лигаз - ферментов , исправляющих повреждения в ДНК и сшивающих (склеивающих) концы ее разорванных нитей.
Рестриктазы-ферменты - способны расщеплять ДНК в строго определенном месте с образованием "липких" концов у образуемых фрагментов. Иными словами, с помощью рестриктаз ген можно разрезать на кусочки - нуклеотиды, а затем с помощью лигаз такие кусочки можно "склеивать", соединять в иной комбинации, конструируя новый ген.

Осуществление введение генных конструкций в бактериальную клетку.
Сначала плазмиды режут рестриктазами и получают односпиральные концы, комплементарные концам генов, проводят гибридизацию гена и плазмиды в пробирке, а затем рекомбинантную плазмиду вводят в клетку.
Плазмиды содержат маркерный ген, например ген, сообщающий клетке устойчивость к определенному антибиотику. .
В рекомбинантных клетках плазмида участвует в процессах репликации, транскрипции и трансляции нового введенного в клетку гена.
Синтезируется продукт этого гена, который в природных клетках никогда ранее не мог образоваться.

Подчеркнем, что in vitro проводится только рекомбинация, а все остальные превращения с плазмидой происходят в клетке так же, как и со своими собственными генами. .
Итак, основные процедуры в генной инженерии сводятся к следующему:
1) рекомбинация плазмиды и ДНК-гена; .
2) введение рекомбинантной плазмиды в клетку; .
3) молекулярное клонирование (технология клонирования наименьших биологических объектов - молекул ДНК, их частей и даже отдельных генов)

Достижения генной инженерии.

Технологии генной инженерии разрабатываются не очень много времени, они имеют крупные достижения и в медицине, и в сельском хозяйстве. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генно-инженерных лекарственных веществ находится на стадии клинического изучения. .
В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены трансгенные растения , например сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

Перспективы генной инженерии. .
На основе детального анализа возможностей и реальных достижений генной инженерии составлены научные прогнозы на начало ХХI века. Высказаны, например, надежды, что в ближайшие годы будут разработаны препараты для лечения такого опасного заболевания, как СПИД, к 2009 году будут определены гены, которые связаны со злокачественными новообразованиями, а к 2010 году будут установлены механизмы возникновения почти всех видов рака. К 2013 году завершится разработка препаратов, предотвращающих рак. .
Не менее важна сегодня генная диагностика. Обычно молекулярная диагностика проводится по белкам, и, как правило, с помощью других белков-антител. Недостатки такой диагностики - обнаружение болезни на поздней стадии. Но теперь можно диагностировать и по генам (ДНК), и по синтезированным на них РНК еще до того, как в организме начали синтезироваться и накапливаться чужеродные белки.
Не имея возможности детально останавливаться на генной терапии, кратко перечислим некоторые проблемы, которыми занимаются ученые:
доставка генов к клеткам-мишеням организма и нуклеиновых кислот внутрь клеток, блокировка или разрушение вредного гена либо блокировка продуцируемой им РНК с помощью антисмысловых ДНК или РНК,
введение нового активного гена или регулятора активности гена. Лечение наследственных болезней целиком зависит от успехов в этом направлении,
введение генов или комплексов генов, блокирующих клеточное деление или вызывающих клеточную смерть, как средство кардинальной раковой терапии.
Отметим также важность биотехнологии для техники: например, создание биосенсоров на основе биологических макромолекул или конструирование биологически возобновляемых источников энергии.

5. КЛОНИРОВАНИЕ ЖИВОТНЫХ.

Клонирование в биологии - метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Эти копии должны обладать идентичной наследственной информацией, т.е. нести идентичный набор генов. .
Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами. .
Наибольшее интерес представляет клонирование многоклеточных организмов, которое стало возможным благодаря успехам генной инженерии. Создавая особые условия и вмешиваясь в структуру ядра клетки специалисты заставляют развиваться её в нужную ткань или даже в целый заранее намеченный организм. Причём открыты не только методы воспроизведения того организма, из которого клетка была взята, но и другого организма - того, от которого был взят только генетический материал. Появилась принципиальная возможность воспроизведения даже умершего организма. И даже тогда, когда от него остались минимальные части - лишь бы из них можно было выделить генетический материал.

Клонирование животных возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo подобно тому, как в природе появляются однояйцевые близнецы. .
В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997, когда родилась овца по кличке Долли - первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы.

Однако, успех сопутствовал лишь в одном из 236 опытов.
В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова).

Дальнейшие эксперименты доказали, что в некоторых случаях ядра соматических (не зародышевых) клеток способны обеспечить нормальное развитие млекопитающих (что было показано на мышах).
Однако получение клона еще не означает получения точной копии клонированного животного. Например, в случае использования приемных матерей при клонировании млекопитающих невозможно обеспечить одинаковые условия, а значит трудно говорить об абсолютной точности клонирования исходной особи. На сегодняшний день ясно, что структурно-функциональные изменения ядер в ходе индивидуального развития животных достаточно глубоки: одни гены активно работают, другие "молчат". И чем организм более специализирован, чем выше ступенька эволюционной лестницы, на которой он стоит, тем эти изменения глубже и труднее обратимы. .
Недавно было показано, что в соматических клетках в ходе их развития хромосомы последовательно укорачиваются на своих концах, а в зародышевых клетках специальный белок - теломераза достраивает, восстанавливает их. .
Поэтому естественен вопрос, способны ли ядра соматических клеток полностью и эквивалентно заменить ядра зародышевых клеток в их функции обеспечения нормального развития зародыша. .
Различают полное и частичное клонирование организмов. При полном воссоздаётся весь организм целиком, при частичном - организм воссоздаётся - соответственно - не полностью. Например, лишь те или иные его ткани. Одно из перспективных применений клонирования тканей - клеточная терапия в медицине. Такие клетки могли бы компенсировать недостаток и дефекты собственных тканей организма и не отторгаться при трансплантации. Это так называемое репродуктивное и терапевтическое клонирование.

ЗАКЛЮЧЕНИЕ.

Носителем генетической информации является ДНК – органическая структура в виде двойной спирали. Информация записана с помощью последовательности нуклеотидов. В генетическом коде используется всего лишь 4 «буквы»-нуклеотида; код един для всех живых организмов.

Генетическая информация реализуется при экспрессии генов в процессах транскрипции и трансляции. Передача генетической информации следующему поколению происходит в результате репликации (самокопирования ДНК).

СПИСОК ЛИТЕРАТУРЫ:

1. В. Н. Сойфер, Э.Р. Пилле, О. Г. Газенко, Л.В. Крушинский, С. Я. Залкинд и др. "История биологии с начала XX века до наших дней" М. 1975;
2. Бекиш О.-Я.Л. Медицинская биология. - Мн.: Ураджай, 2000. - с.114-119;

3. Мутовин Г.Р. Основы клинической генетики. - М.: Высшая школа, 1997. - с. 83-84;

4. Заяц Р.С. Основы медицинской генетики. - Мн.: Высшая школа, 1998. - с. 60-65;

5. Пехов А.П. Биология с основами экологии, 2000, 672 с;
6. Розанов С.И. Общая экология, 2003, 288 с;
7. Куклев Ю.И. Физическая экология, 2001, 359 с;
8. Николайкин Н.И. Экология Изд.2, 2003, 624 с.

  • 26.56 МБ
  • добавлен 12.12.2010

Минск: 1992. Цитологические и молекулярные основы изменчивости. Генетическая роль ДНК. Основы размножения. Закономерности наследования признаков. Генетика пола. Генетические основы индивидуального развития. Изменчивость. Структура генов и генома прокариот и эукариот. Генетическая структура популяций. Генетика человека. Генетичес...

Введение

1.Понятие о наследственности

3.Механизм наследственности

Заключение

Список литературы

Введение

В органическом мире наблюдается удивительное сходство между родителями и детьми, между братьями и сестрами, а также другими родственниками. Это сходство обуславливается наследственностью, то есть способностью живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития. Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма. Благодаря наследственности некоторые виды (например, кистеперая рыба латимерия, жившая в девонском периоде) оставались почти неизменными на протяжении сотен миллионов лет, воспроизводя за это время огромное количество поколений.

1.Понятие о наследственности

Наследственность - присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловленно передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или онтогенеза. Как общебиологическое явление наследственность - важнейшее условие существования дифференцированных форм жизни, признаков организмов, хотя оно нарушается изменчивостью - возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.

Иногда термин наследственность относят к передаче от одного поколения другому инфекционных начал (т. н. инфекционная наследственность) или навыков обучения, образования, традиций (т. н. социальная, или сигнальная наследственность).Подобное расширение понятия наследственность за пределы его биологической и эволюционной сущности спорно.

Таким образом, наследственность - это важнейшая особенность живых организмов, заключающаяся в способности передавать свои свойства и функции от родителей к потомкам.

2.Определение гена. Основная функция гена

Ген - это единица хранения, передачи и реализации наследственной информации. Ген представляет собой специфический участок молекулы ДНК, в структуре которого закодирована структура определенного полипептида (белка). Это, казалось бы, достаточно простое положение известно многим со школы. Сейчас ясно, что многие участки ДНК не кодируют белки, а, вероятно, выполняют регулирующие функции. Во всяком случае, в структуре генома человека только около 2% ДНК представляют последовательности, на основе которых идет синтез информационной РНК (процесс транскрипции), которая затем определяет последовательность аминокислот при синтезе белков (процесс трансляции). В настоящее время полагают, что в геноме человека имеется около 30 тыс. генов.

Основной функцией гена является кодирование информации для синтеза специфического белка.

Свойства генов

1. дискретность - несмешиваемость генов;

2. стабильность - способность сохранять структуру;

3. лабильность - способность многократно мутировать;

4. множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;

5. аллельность - в генотипе диплоидных организмов только две формы гена;

6. специфичность - каждый ген кодирует свой продукт;

7. плейотропия - множественный эффект гена;

8. экспрессивность - степень выраженности гена в признаке;

9. пенетрантность - частота проявления гена в фенотипе;

10. амплификация - увеличение количества копий гена.

Классификация генов

1. Структурные гены - уникальные компоненты генома, представляющие единственную последовательность, кодирующую определенный белок или некоторые виды РНК.

2. Функциональные гены - регулируют работу структурных генов.

3.Механизм наследственности

Клетки, через которые осуществляется преемственность поколений, - специализированные половые при половом размножении и неспециализированные (соматические) клетки тела при бесполом несут в себе не сами признаки и свойства будущих организмов, а только задатки их развития. Эти задатки и являются генами. Ген - это участок молекулы ДНК (или участок хромосомы), определяющий возможность развития отдельного элементарного признака. Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4 типов - нуклеотидов, специфичность которых определяется одним из 4 азотистых оснований. Сочетание трех рядом стоящих нуклеотидов в цепи ДНК составляют генетический код. ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

Ген представляет собой группу рядом лежащих нуклеотидов, которыми закодирован один белок, определяющий один признак. Число генов очень велико: у человека их десятки тысяч. Один и тот же ген может оказывать влияние на развитие ряда признаков, так же, как и на формирование одного признака могут оказывать влияние несколько генов.

Каждому виду растений и животных свойствен свой количественный набор хромосом. У всех организмов одного и того же вида каждый ген расположен в одном и том же месте строго определенной хромосомы. Каждая клетка человеческого тела содержит 46 хромосом. Почти все хромосомы в наборе представлены парами, в каждую из 22-х пар входят одинаковые по величине идентичные хромосомы, а 23-я пара является половыми хромосомами: у женщин она состоит из одинаковых хромосом XX, а у мужчин - XY. В галоидном наборе хромосом имеется только один ген, ответственный за развитие данного признака. В диплоидном наборе хромосом (в соматических клетках) содержатся две гомологичные хромосомы и соответственно два гена, определяющие развитие одного какого-то признака.

Генетическая информация закодирована в последовательности азотистых оснований, содержащихся в молекуле ДНК. Азотистые основания можно рассматривать в качестве “букв” генетического алфавита. Последовательность оснований образует “слова”. Гены - это своего рода “предложения”, записанные на генетическом языке. Соответственно генетическое содержимое организма представляет собой как бы “книгу”, составленную из генетических предложений. В отличие от строго определенного расположения азотистых оснований в двух комплементарных частях, нет никаких ограничений относительно того, в каком порядке должны следовать основания друг за другом вдоль одной цепи. Благодаря этому существует практически неограниченное число различных молекул ДНК. Число возможных генетических сообщений, кодируемых достаточно длинными цепями ДНК, практически не ограничено. За воспроизведение в поколениях растений, животных и человека наследственных свойств ответственны 3 эволюционно закрепленных универсальных процесса.


После открытия принципа молекулярной организации такого вещества, как ДНК в 1953 году, начала развиваться молекулярная биология. Далее в процессе исследований ученые выяснили как рекомбенируется ДНК, ее состав и как устроен наш человеческий геном.

Каждый день на молекулярном уровне происходят сложнейшие процессы. Как устроена молекула ДНК, из чего она состоит? И какую роль играют в клетке молекулы ДНК? Расскажем подробно обо всех процессах, происходящих внутри двойной цепи.

Что такое наследственная информация?

Итак, с чего все начиналось? Еще в 1868 нашли в ядрах бактерий. А в 1928 г. Н. Кольцов выдвинул теорию о том, что именно в ДНК зашифрована вся генетическая информация о живом организме. Затем Дж. Уотсон и Ф. Крик нашли модель всем теперь известной спирали ДНК в 1953 году, за что заслужено получили признание и награду — Нобелевскую премию.

Что такое вообще ДНК? Это вещество состоит из 2 объединенных нитей, точнее спиралей. Участок такой цепочки с определенной информацией называется геном.

В ДНК хранится вся информация о том, что за белки будут формироваться и в каком порядке. Макромолекула ДНК — это материальный носитель невероятно объемной информации, которая записана строгой последовательностью отдельных кирпичиков — нуклеотидов. Всего нуклеотидов 4, они дополняют друг друга химически и геометрически. Этот принцип дополнения, или комплементарности, в науке будет описан позже. Это правило играет ключевую роль в кодировке и декодировании генетической информации.

Так как нить ДНК невероятно длинная, повторений в этой последовательности не бывает. У каждого живого существа собственная уникальная цепочка ДНК.

Функции ДНК

К функциям относятся хранение наследственной информации и ее передача потомству. Без этой функции геном вида не мог бы сохраняться и развиваться на протяжении тысячелетий. Организмы, которые претерпели серьезные мутации генов, чаще не выживают или теряют способность производить потомство. Так происходит природная защита от вырождения вида.

Еще одна существенно важная функция — реализация хранимой информации. Клетка не может создать ни одного жизненно важного белка без тех инструкций, которые хранятся в двойной цепочке.

Состав нуклеиновых кислот

Сейчас уже достоверно известно, из чего состоят сами нуклеотиды — кирпичики ДНК. В их состав входят 3 вещества:

  • Ортофосфорная кислота.
  • Азотистое основание. Пиримидиновые основания — которые имеют только одно кольцо. К ним относят тимин и цитозин. Пуриновые основания, в составе которых присутствуют 2 кольца. Это гуанин и аденин.
  • Сахароза. В составе ДНК — дезоксирибоза, В РНК — рибоза.

Число нуклеотидов всегда равно числу азотистых оснований. В специальных лабораториях расщепляют нуклеотид и выделяют из него азотистое основание. Так изучают отдельные свойства этих нуклеотидов и возможные мутации в них.

Уровни организации наследственной информации

Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.

Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.

Разделяют несколько видов генов:

  • по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
  • по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.

Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка .

А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.

Каков генетический код человека?

Дело в том, что весь огромнейший потенциал человеческого развития заложен уже в период зачатия. Вся наследственная информация, которая необходима для развития зиготы и роста ребенка уже после рождения, зашифрована в генах. Участки ДНК и есть самые основные носители наследственной информации.

У человека 46 хромосом, или 22 соматические пары плюс по одной определяющей пол хромосоме от каждого родителя. Этот диплоидный набор хромосом кодирует весь физический облик человека, его умственные и физические способности и предрасположенность к заболеваниям. Соматические хромосомы внешне неразличимы, но несут они разную информацию, так как одна из них от отца, другая - от матери.

Мужской код отличается от женского последней парой хромосом — ХУ. Женский диплоидный набор — это последняя пара, ХХ. Мужчинам достается одна Х-хромосома от биологической матери, и затем она передается дочерям. Половая У-хромосома передается сыновьям.

Хромосомы человека значительно разнятся по размеру. Например, самая маленькая пара хромосом - №17. А самая большая пара - 1 и 3.

Диаметр двойной спирали у человека - всего 2 нм. ДНК настолько плотно закручена, что вмещается в маленьком ядре клетки, хотя ее длина будет достигать 2 метров, если ее раскрутить. Длина спирали — это сотни миллионов нуклеотидов.

Как передается генетический код?

Итак, какую роль играют в клетке молекулы ДНК при делении? Гены — носители наследственной информации - находятся внутри каждой клетки организма. Чтобы передать свой код дочернему организму, многие существа делят свое ДНК на 2 одинаковые спирали. Это называется репликацией. В процессе репликации ДНК расплетается и специальные «машины» дополняют каждую цепочку. После того как раздвоится генетическая спираль, начинает делиться ядро и все органеллы, а затем и вся клетка.

Но у человека другой процесс передачи генов - половой. Признаки отца и матери перемешиваются, в новом генетическом коде содержится информация от обоих родителей.

Хранение и передача наследственной информации возможны благодаря сложной организации спирали ДНК. Ведь как мы говорили, структура белков зашифрована именно в генах. Раз создавшись во время зачатия, этот код на протяжении всей жизни будет копировать сам себя. Кариотип (личный набор хромосом) не изменяется во время обновления клеток органов. Передача же информации осуществляется с помощью половых гамет — мужских и женских.

Передавать свою информацию потомству не способны только вирусы, содержащие одну цепочку РНК. Поэтому, чтобы воспроизводиться, им нужны клетки человека или животного.

Реализация наследственной информации

В ядре клетки постоянно происходят важные процессы. Вся информация, записанная в хромосомах, используется для построения белков из аминокислот. Но цепочка ДНК никогда не покидает ядро, поэтому здесь нужна помощь другого важного соединения = РНК. Как раз РНК способно проникнуть через мембрану ядра и взаимодействовать с цепочкой ДНК.

Посредством взаимодействия ДНК и 3 видов РНК происходит реализация всей закодированной информации. На каком уровне происходит реализация наследственной информации? Все взаимодействия происходят на уровне нуклеотидов. Информационная РНК копирует участок цепи ДНК и приносит эту копию в рибосому. Здесь начинается синтез из нуклеотидов новой молекулы.

Для того чтобы иРНК могла скопировать необходимую часть цепи, спираль разворачивается, а затем, по завершении процесса перекодировки, снова восстанавливается. Причем этот процесс может происходить одновременно на 2 сторонах 1 хромосомы.

Принцип комплементарности

Состоят из 4 нуклеотидов — это аденин (А), гуанин (G), цитозин (С), тимин (T). Соединены они водородными связями по правилу комплементарности. Работы Э. Чаргаффа помогли установить это правило, так как ученый заметил некоторые закономерности в поведении этих веществ. Э. Чаргафф открыл, что молярное отношение аденина к тимину равно единице. И точно так же отношение гуанина к цитозину всегда равно единице.

На основе его работ генетики сформировали правило взаимодействия нуклеотидов. Правило комплементарности гласит, что аденин соединяется только с тимином, а гуанин - с цитозином. Во время декодирования спирали и синтеза нового белка в рибосоме такое правило чередования помогает быстро найти необходимую аминокислоту, которая прикреплена к транспортной РНК.

РНК и его виды

Что такое наследственная информация? нуклеотидов в двойной цепи ДНК. А что такое РНК? В чем заключается ее работа? РНК, или рибонуклеиновая кислота, помогает извлекать информацию из ДНК, декодировать ее и на основе принципа комплементарности создавать необходимые клеткам белки.

Всего выделяют 3 вида РНК. Каждая из них выполняет строго свою функцию.

  1. Информационная (иРНК) , или еще ее называют матричная. Она заходит прямо в центр клетки, в ядро. Находит в одной из хромосом необходимый генетический материал для постройки белка и копирует одну из сторон двойной цепи. Копирование происходит снова по принципу комплементарности.
  2. Транспортная — это небольшая молекула, у которой на одной стороне декодеры-нуклеотиды, а на другой стороне соответствующие основному коду аминокислоты. Задача тРНК — доставить в «цех», то есть в рибосому, где синтезирует необходимую аминокислоту.
  3. рРНК — рибосомная. Она контролирует количество белка, который продуцируется. Состоит из 2 частей — аминокислотного и пептидного участка.

Единственное отличие при декодировании — у РНК нет тимина. Вместо тимина тут присутствует урацил. Но потом, в процессе синтеза белка, при ТРНК все равно правильно устанавливает все аминокислоты. Если же происходят какие-то сбои в декодировании информации, то возникает мутация.

Репарация поврежденной молекулы ДНК

Процесс восстановления поврежденной двойной цепочки называется репарацией. В процессе репарации поврежденные гены удаляются.

Затем необходимая последовательность элементов в точности воспроизводиться и врезается обратно в то же место на цепи, откуда было извлечено. Все это происходит благодаря специальным химическим веществам — ферментам.

Почему происходят мутации?

Почему некоторые гены начинают мутировать и перестают выполнять свою функцию — хранение жизненно необходимой наследственной информации? Это происходит из-за ошибки при декодировании. Например, если аденин случайно заменен на тимин.

Существуют также хромосомные и геномные мутации. Хромосомные мутации случаются, если участки наследственной информации выпадают, удваиваются либо вообще переносятся и встраиваются в другую хромосому.

Геномные мутации наиболее серьезны . Их причина - это изменение числа хромосом. То есть когда вместо пары — диплоидного набора присутствует в кариотипе триплоидный набор.

Наиболее известный пример триплоидной мутации — это синдром Дауна, при котором личный набор хромосом 47. У таких детей образуется 3 хромосомы на месте 21-й пары.

Известна также такая мутация, как полиплодия. Но полиплодия встречается только у растений.

© 2024 Сайт по саморазвитию. Вопрос-ответ