Вконтакте Facebook Twitter Лента RSS

Мейоз 1 набор хромосом в дочерних клетках. Мейоз (17) - Мейоз особый тип деления клеток, в результате которого образуются половые клетки

Половое размножение животных, растений и грибов связано с формированием специализированных половых клеток - гамет, которые при оплодотворении сливаются, объединяя свои ядра. Естественно, что при этом в зиготе оказывается в два раза больше хромосом, чем в каждой из гамет. Такой же двойной набор хромосом будут иметь и клетки всего организма, выросшего из зиготы. Действительно, неполовые, соматические (от греч. «сома» - тело), клетки большинства многоклеточных организмов имеют двойной, диплоидный (2n), набор хромосом, где каждая хромосома имеет парную, гомологичную, хромосому. Гаметы же имеют одинарный, гаплоидный (n), набор хромосом, в котором все хромосомы уникальны и не имеют пар - гомологов. Особый тип деления клеток, в результате которого образуются половые клетки, называют мейозом (рис. 30). В отличие от митоза, при котором сохраняется число хромосом, получаемых дочерними клетками, при мейозе число хромосом в дочерних клетках уменьшается вдвое.

Рис. 30. Схема мейоза

Процесс мейоза состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление). Удвоение ДНК и хромосом происходит только перед мейозом I.

В результате первого деления мейоза, называемого редукционным, образуются клетки с уменьшенным вдвое числом хромосом. После второго деления следует формирование зрелых половых клеток.

Фазы мейоза. Во время профазы I мейоза двойные хромосомы хорошо видны в световой микроскоп. Каждая хромосома состоит из двух хроматид, которые связаны вместе одной центромерой. В процессе спирализа-ции двойные хромосомы укорачиваются. Гомологичные хромосомы тесно соединяются друг с другом продольно (хроматида к хроматиде), или, как говорят, конъюгируют. При этом хроматиды нередко перекрещиваются или перекручиваются одна вокруг другой. Затем гомологичные хромосомы начинают как бы отталкиваться друг от друга. В местах перекреста хроматид происходят поперечные разрывы, и хроматиды обмениваются участками. Это явление называют перекрестом хромосом (рис. 31). Одновременно, как и при митозе, распадается ядерная оболочка, исчезает ядрышко, образуются нити веретена. Отличие профазы I мейоза от профазы митоза состоит в конъюгации гомологичных хромосом и взаимном обмене участками в процессе перекреста хромосом.

Рис. 31. Перекрест хромосом в мейозе

Характерный признак метафазы I - расположение в экваториальной плоскости клетки гомологичных хромосом, лежащих парами. Вслед за этим наступает анафаза I, во время которой целые гомологичные хромосомы (каждая состоит из двух хроматид) отходят к противоположным полюсам клетки. (Заметим, что при митозе к полюсам деления расходились хроматиды.) Очень важно подчеркнуть одну особенность расхождения хромосом на этой стадии мейоза: гомологичные хромосомы каждой пары расходятся в стороны случайным образом, независимо от хромосом других пар. У каждого полюса оказывается вдвое меньше хромосом, чем было в клетке при начале деления. Затем наступает телофаза I, во время которой образуются две клетки с уменьшенным вдвое числом хромосом.

Интерфаза короткая, так как синтеза ДНК не происходит. Далее следует второе мейотическое деление (мейоз II). Оно отличается от митоза только тем, что количество хромосом в метафазе II вдвое меньше, чем количество хромосом в метафазе митоза у того же организма. Поскольку каждая хромосома состоит из двух хроматид, то в метафазе II центромеры хромосом делятся, и к полюсам расходятся хроматиды, которые становятся дочерними хромосомами. Только теперь наступает настоящая интерфаза. Из каждой исходной клетки возникают четыре клетки с гаплоидным набором хромосом.

Разнообразие гамет. Рассмотрим мейоз клетки, имеющей 3 пары хромосом (2n=6). После двух мейотических делений образуются 4 клетки с гаплоидным набором хромосом (n=3). Поскольку хромосомы каждой пары расходятся в дочерние клетки независимо от хромосом других пар, равновероятно образование восьми типов гамет с различным сочетанием хромосом, имевшихся в материнской клетке.

Еще большее разнообразие гамет обеспечивается конъюгацией и перекрестом гомологичных хромосом в профазе мейоза.

Биологическое значение мейоза. Если бы в процессе мейоза не происходило уменьшения числа хромосом, то в каждом следующем поколении при слиянии ядер яйцеклетки и сперматозоида число хромосом увеличивалось бы бесконечно. Благодаря мейозу зрелые половые клетки получают гаплоидное (n) число хромосом, при оплодотворении же восстанавливается свойственное данному виду диплоидное (2n) число. При мейозе гомологичные хромосомы попадают в разные половые клетки, а при оплодотворении парность гомологичных хромосом восстанавливается. Следовательно, обеспечивается постоянный для каждого вида полный диплоидный набор хромосом и постоянное количество ДНК.

Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяют закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома. Она может быть:

  1. отцовской хромосомой;
  2. материнской хромосомой;
  3. отцовской с участком материнской;
  4. материнской с участком отцовской.

Эти процессы возникновения большого количества качественно различных половых клеток способствуют наследственной изменчивости.

В отдельных случаях вследствие нарушения процесса мейоза, при нерасхождении гомологичных хромосом, половые клетки могут не иметь гомологичной хромосомы или, наоборот, иметь обе гомологичные хромосомы. Это приводит к тяжелым нарушениям в развитии организма или к его гибели.

  1. Сравните митоз и мейоз, выделите черты сходства и различия.
  2. Охарактеризуйте понятия: мейоз, диплоидный набор хромосом, гаплоидный набор хромосом, конъюгация.
  3. Какое значение имеет независимое расхождение гомологичных хромосом в первом делении мейоза?
  4. В чем заключается биологическое значение мейоза?

Вспомните из курса зоологии, как осуществляется оплодотворение у животных.

Мейоз – это способ деления клеток эукариот, при котором образуются гаплоидные клетки. Этим мейоз отличается от митоза, при котором образуются диплоидные клетки.

Кроме того, мейоз протекает в два следующих друг за другом деления, которые называют соответственно первым (мейоз I) и вторым (мейоз II). Уже после первого деления клетки содержат одинарный, т. е. гаплоидный, набор хромосом. Поэтому первое деление часто называют редукционным . Хотя иногда термин «редукционное деление» применяют по отношению ко всему мейозу.

Второе деление называется эквационным и по механизму протекания сходно с митозом. В мейозе II к полюсам клетки расходятся сестринские хроматиды.

Мейозу, как и митозу, в интерфазе предшествует синтез ДНК – репликация, после которой каждая хромосома состоит уже из двух хроматид, которые называют сестринскими. Между первым и вторым делениями синтеза ДНК не происходит.

Если в результате митоза образуются две клетки, то в результате мейоза – 4. Однако если организм производит яйцеклетки, то остается только одна клетка, сконцентрировавшая в себе питательные вещества.

Количество ДНК перед первым делением принято обозначать как 2n 4c. Здесь n обозначает хромосомы, c – хроматиды. Это значит, что каждая хромосома имеет гомологичную себе пару (2n), в то же время каждая хромосома состоит из двух хроматид. С учетом наличия гомологичной хромосомы получается четыре хроматиды (4c).

После первого и перед вторым делением количество ДНК в каждой из двух дочерних клетках сокращается до 1n 2c. То есть гомологичные хромосомы расходятся в разные клетки, но продолжают состоять из двух хроматид.

После второго деления образуются четыре клетки с набором 1n 1c, т. е. в каждой присутствует только одна хромосома из пары гомологичных и состоит она только из одной хроматиды.

Ниже приводится подробное описание первого и второго мейотического деления. Обозначение фаз такое же как при митозе: профаза, метафаза, анафаза, телофаза. Однако протекающие в эти фазы процессы, особенно в профазе I, несколько отличаются.

Мейоз I

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).


Конъюгация - процесс сцепления гомологичных хромосом. Кроссинговер - обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма .

Спаренные гомологичные хромосомы называются бивалентами , или тетрадами . Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие - к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II

Интерфаза между двумя мейотическими делениями называется интеркинезом , он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.


Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизм а полового размножения, при котором сохраняется постоянство числа хромосом у вида .

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов , благодаря которой возможна эволюция живых организмов.

МЕЙОЗ В основе размножения и индивидуального развития организмов лежит процесс деления клеток. Особый вид деления клеток, в результате которого образуются половые клетки, называют мейозом. Особенности мейоза В отличие от митоза, при котором сохраняется число хромосом, получаемых дочерними клетками, при мейозе число хромосом в дочерних клетках уменьшается вдвое. Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются. Но, если при митозе в каждой хромосоме хроматиды просто расходятся, то при мейозе хромосома (состоящая из двух хроматид) тесно переплетается своими частями с другой, гомологичной ей хромосомой (также состоящей из двух хроматид), и происходит кроссинговер. Затем уже новые хромосомы с перемешанными «мамиными» и «папиными» генами расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом уже отличается от исходного, в них произошла рекомбинация. Первое деление мейоза Фазы Процессы Профаза I Конъюгация гомологичных хромосом (одна из них материнская, другая - отцовская) Образование веретена деления. Расположение гомологичных хромосом по экватору Метафаза I Анафаза I Разделение пар хромосом (состоящих из двух хроматид) и перемещение их к полюсам. Телофаза I Образование дочерних клеток. Второе деление мейоза Фазы Профаза II Процессы Возникшие в телофазе I дочерние клетки проходят Метафаза II митотическое деление. Центромеры делятся, хроматиды хромосом обеих Анафаза II Телофаза II дочерних клеток расходятся к их полюсам. Образование четырех гаплоидных ядер или клеток. Второе деление мейоза происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором. В результате мейоза из одной диплоидной клетки образуются четыре гаплоидных клетки. Процесс мейоза состоит из двух последовательных клеточных делений – мейоза I (первое деление) мейоза II (второе деление). Удвоение ДНК и хромосом происходит только перед мейозом I . В результате первого деления мейоза, называемого редукционным, образуются клетки с уменьшенным вдвое числом хромосом. Второе деление мейоза заканчивается образованием половых клеток Гаметогенез – это процесс образования мужских или женских гамет (половых клеток). Краткий обзор этапов гаметогенеза Гаметогенез подразделяется на сперматогенез (процесс образования сперматозоидов у самцов) и оогенез (процесс образования яйцеклетки). По тому, что происходит с ДНК, эти процессы практически не отличаются: одна исходная диплоидная клетка дает четыре гаплоидные. Однако, по тому, что происходит с цитоплазмой, эти процессы кардинально различаются. Биологическое значение мейоза 1. Обеспечивается постоянный для каждого вида полный диплоидный набор хромосом и постоянное количество ДНК. 2. Возникает большое количество качественно различных половых клеток, что способствует наследственной изменчивости. 3. Нарушение процесса мейоза приводит к тяжелым нарушениям в развитии организма или к его гибели.

Деление клеток - это репродуктивный механизм, при котором живые организмы растут, развиваются и производят потомство. По завершению митотического одна клетка делится на две дочерние клетки. Родительская клетка, подвергающаяся мейозу, продуцирует четыре дочерние клетки.

В то время как митоз свойственен как прокариотическим, так и эукариотическим организмам, мейоз возникает в животных, растений и грибов.

Дочерние клетки в митозе

Митоз - это этап клеточного цикла, который включает деление и разделение хромосом. Процесс деления завершается цитокинезом, когда разделяется и образуются две разные дочерние клетки. До митоза клетка готовится к делению, реплицируя ДНК, увеличивает массу и количество . Митоз включает несколько фаз: профазу, метафазу, анафазу и телофазу. На этих фазах хромосомы отделяются, перемещаются в противоположные полюсы клетки и включаются во вновь образованные ядра. В конце процесса деления, дублированные хромосомы разделяются поровну между двумя клетками. Эти дочерние клетки являются генетически идентичными , которые имеют одинаковое количество и тип хромосом.

Соматические клетки являются примерами клеток, делящихся посредством митоза. К ним относятся все , за исключением половых клеток.

Раковые клетки, делящиеся через митоз, способны продуцировать три или более дочерних клетки. Эти клетки имеют либо слишком много, либо недостаточно хромосом из-за нерегулярного деления.

Дочерние клетки в мейозе

В организмах, способных к , дочерние клетки продуцируются мейозом. Мейоз - это процесс, состоящий из двух этапов, которые продуцируют . Делящаяся клетка дважды проходит через профазу, метафазу, анафазу и телофазу. В конце мейоза и цитокинеза четыре продуцируются из одной диплоидной клетки. Эти гаплоидные дочерние клетки имеют половину числа хромосом от родительской клетки и генетически не идентичны ей. Во время полового размножения гаплоидные гаметы объединяются при и становятся диплоидной зиготой. Зигота продолжает разделяться митозом и развивается в полностью функционирующий организм.

Дочерние клетки и хромосомное движение

Как дочерние заканчивают деление с соответствующим числом ? Ответ на этот вопрос касается устройства веретена деления, состоящего из микротрубочек и белков, которые манипулируют хромосомами во время деления клеток. Волокна веретена прикрепляются к реплицированным хромосомам, перемещая и разделяя их, когда это необходимо.

Митотические и мейотические веретена перемещают хромосомы в противоположные полюса клеток, гарантируя, что каждая дочерняя клетка получит правильное количество хромосом. Веретено деления также определяет расположение метафазной пластины - плоскость, на которой клетка в конечном счете разделается.

Дочерние клетки и цитокинез

Последний этап в деления клеток происходит в цитокинезе. Этот процесс начинается во время анафазы и заканчивается после телофазы. Во время цитокинеза делящаяся клетка разделяется на две дочерние с помощью веретена деления. В устройство веретена определяет местоположением важной структуры в процессе деления клеток, называемой сократительным кольцом. Сократительное кольцо образовано из филаментов, белков актина и микротрубочек, включая моторный белок миозин. Миозин сжимает кольцо актиновых нитей, образуя глубокую бороздку, называемую бороздкой расщепления. Поскольку сократительное кольцо продолжает сжиматься, оно делит цитоплазму и разделяет клетку на две вдоль бороздки расщепления.

Процесс цитокинеза отличается в . Растительные клетки не содержат астры, звездообразные микротрубочки, которые помогают определить место бороздки расщепления. На самом деле в цитокинезе растительных клеток не образуется спайная бороздка. Вместо этого дочерние клетки разделяются клеточной пластиной, образованной везикулами, которые высвобождаются из органелл сестринских хроматид , которое происходит в анафазе митоза и анафазы II мейоза. Дочерние хромосомы развиваются из репликации одноцепочечных хромосом в фазе синтеза (S-фаза) клеточного цикла.

Одноцепочечные хромосомы превращаются в двухцепочечные хромосомы, которые удерживаются вместе в области, называемой . Двухцепочечные хромосомы известны как сестринские . Сестринские хроматиды в конечном счете разделяются и делятся между вновь образованными дочерними клетками. Каждая отдельная хроматида известна как дочерняя хромосома.

Цель: учащиеся углубляют знания о формах размножения организмов; формируются новые понятия о митозе и мейозе и их биологическом значении.

Оборудование:

  1. Учебно-наглядные пособия: табл., плакаты
  2. технические средства обучения: интерактивная доска, мультимедийные презентации, обучающие компьютерные программы.

План урока:

  1. Организационный момент
  2. Повторение.
    1. Что такое размножение?
    2. Какие типы размножения вам известны? Дайте им определения?
    3. Перечислите примеры бесполого размножения? Приведите примеры.
    4. Биологическое значение бесполого размножения?
    5. Какое размножение называется половым?
    6. Какие половые клетки вам известны?
    7. Чем гаметы отличаются от соматических клеток?
    8. Что такое оплодотворение?
    9. В чем заключается преимущества полового размножения по сравнению с бесполым размножением?
  3. Изучение нового материала

Ход урока

В основе передачи наследственной информации, размножения, а также роста, развития и регенерации лежит важнейший процесс – деление клеток. Молекулярная сущность деления заключена в способности ДНК к самоудвоению молекул.

Объявление темы урока. Поскольку фазы митоза и мейоза в общих чертах мы уже изучали в 9 классе, задачей общей биологии является рассмотрение этого процесса на молекулярном и биохимическом уровне. В связи с этим особое внимание мы уделим изменению хромосомных структур.

Клетка является не только единицей строения и функции у живых организмов, но также и генетической единицей. Это единица наследственности и изменчивости, проявляющихся в процессе деления клеток. Элементарным носителем наследственных свойств клетки является ген. Ген представляет собой отрезок молекулы ДНК из нескольких сотен нуклеотидов, где закодировано строение одной молекулы белка и проявление какого-то наследственного признака клетки. Молекула ДНК в комплексе с белком образует хромосому. Хромосомы ядра и локализованные в них гены являются основными носителями наследственных свойств клетки. В начале клеточного деления хромосомы укорачиваются и окрашиваются более интенсивно, так что становятся видимыми по отдельности.

В делящейся клетке хромосома имеет вид двойной палочки и состоит из двух разделенных щелью вдоль оси хромосомы половинок или хроматид. Каждая из хроматид содержит одну молекулу ДНК.

Внутреннее строение хромосом, число нитей ДНК в них меняются в жизненном цикле клетки.

Вспомним: что такое клеточный цикл? Какие этапы выделяют в клеточном цикле? Что происходит на каждом этапе?

Интерфаза включает в себя три периода.

Пресинтетический период G 1 наступает сразу после деления клетки. В это время в клетке происходит синтез белков, АТФ, разных видов РНК и отдельных нуклеотидов ДНК. Клетка растет, и в ней интенсивно накапливаются различные вещества. Каждая хромосома в этот период однохроматидна, генетический материал клетки обозначается 2n 1xp 2с (n – набор хромосом, хр – число хроматид, с – количество ДНК).

В синтетическом периоде S осуществляется редупликация молекул ДНК клетки. В результате удвоения ДНК в каждой из хромосом оказывается вдвое больше ДНК, чем было до начала S-фазы, но число хромосом не изменяется. Теперь генетический набор клетки составляет 2n 2xp 4с (диплоидный набор, хромосомы двухроматидны, количество ДНК – 4).

В третьем периоде интерфазы – постсинтетическом G 2 – продолжается синтез РНК, белков и накопление клеткой энергии. По окончании интерфазы клетка увеличивается в размерах и начинается ее деление.

Деление клетки.

В природе существует 3 способа клеточного деления – амитоз, митоз мейоз.

Амитозом делятся прокариотические организмы и некоторые клетки эукариот, например, мочевого пузыря, печени человека, а также старые либо поврежденные клетки. Сначала в них делится ядрышко, затем ядро на две или несколько частей путем перетяжек и в конце деления перешнуровывается цитоплазма на две или несколько дочерних клеток. Распределение наследственного материала и цитоплазмы не равномерно.

Митоз – универсальный способ деления эукариотических клеток, при котором из диплоидной материнской клетки образуются две подобные ей дочерние клетки.

Длительность митоза 1-3 часа и в его процессе 4 фазы: профаза, метафаза, анафаза и телофаза.

Профаза. Обычно самая продолжительная фаза клеточного деления.

Увеличивается объем ядра, хромосомы спирализуются. В это время хромосома состоит из двух хроматид, соединенных между собой в области первичной перетяжки или центромеры. Затем растворяются ядрышки и ядерная оболочка – хромосомы лежат в цитоплазме клетки. Центриоли расходятся к полюсам клетки и образуют между собой нити веретена деления, а в конце профазы нити крепятся к центромерам хромосом. Генетическая информация клетки, по-прежнему, как в интерфазе (2n 2хр 4с).

Метафаза. Хромосомы располагаются строго в зоне экватора клетки, образуя метафазную пластину. На стадии метафазы хромосомы имеют самую малую длину, так как в это время они сильно спирализованы и конденсированы. Поскольку хромосомы хорошо видны подсчет и изучение хромосом обычно проходит в этот период деления. По продолжительности это самая короткая фаза митоза, так как она длится то мгновение, когда центромеры удвоенных хромосом располагаются строго по линии экватора. И уже в следующий момент начинается следующая фаза.

Анафаза. Каждая центромера расщепляется на две, и нити веретена оттягивают дочерние центромеры к противоположным полюсам. Центромеры тянут за собой отделившиеся одна от другой хроматиды. На полюса приходят по одной хроматиде из пары – это дочерние хромосомы. Количество генетической информации на каждом полюсе теперь равно (2n 1хр 2с).

Завершается митоз телофазой. Процессы, происходящие в этой фазе, обратны процессам, которые наблюдались в профазе. На полюсах происходит деспирализация дочерних хромосом, они утоньшаются и становятся слаборазличимыми. Вокруг них образуются ядерные оболочки, а затем появляются ядрышки. Одновременно с этим идет деление цитоплазмы: в животных клетках – перетяжкой, а у растений со средины клетки к периферии. После образования цитоплазматической мембраны в растительных клетках формируется целлюлозная оболочка. Образуются две дочерние клетки с диплоидным набором однохроматидных хромосом (2n 1хр 2с).

Следует отметить, что все процессы, происходящие в клетке, в том числе и митоз, находятся под генетическим контролем. Гены контролируют последовательные стадии редупликации ДНК, движение, спирализацию хромосом и т.д.

Биологическое значение митоза:

  1. Точное распределение хромосом и их генетической информации между дочерними клетками.
  2. Обеспечивает постоянство кариотипа и генетическую преемственность во всех клеточных проявлениях; т.к. иначе было бы не возможным постоянство строения и правильность функционирования органов и тканей многоклеточного организма.
  3. Обеспечивает важнейшие процессы жизнедеятельности – эмбриональное развитие, рост, восстановление тканей и органов, а также бесполое размножение организмов.

Мейоз

Образование половых клеток (гамет) происходит иначе, чем процесс размножения соматических клеток. Если бы образование гамет шло таким же путем, то после оплодотворения (слияния мужской и женской гамет) число хромосом каждый раз удваивалось бы. Однако этого не происходит. Каждому виду свойственно определенное число и свой специфический набор хромосом (кариотип).

Мейоз – это особый вид деления, когда из диплоидных (2п) соматических клеток половых органов образуются половые клетки (гаметы) у животных и растений или споры у споровых растений с гаплоидным (п) набором хромосом в этих клетках. Затем в процессе оплодотворения ядра половых клеток сливаются, и восстанавливается диплоидный набор хромосом (n+n=2n).

В непрерывном процессе мейоза идут два последовательных деления: мейоз I и мейоз II. В каждом делении те же фазы, что и в митозе, но разные по продолжительности и изменениям генетического материала. В результате мейоза I число хромосом в образовавшихся дочерних клетках уменьшается вдвое (редукционное деление), а при мейозе II гаплоидность клеток сохраняется (эквационное деление).

Профаза мейоза I – удвоенные в интерфазе гомологичные хромосомы попарно сближаются. При этом отдельные хроматиды гомологичных хромосом переплетаются, перекрещиваются между собой и могут разрываться в одинаковых местах. Во время этого контакта гомологичные хромосомы могут обмениваться соответствующими участками (генами), т.е. идет кроссинговер. Кроссинговер вызывает перекомбинацию генетического материала клетки. После этого процесса гомологичные хромосомы снова разъединяются, растворяются оболочки ядра, ядрышек и образуется веретено деления. Генетическая информация клетки в профазе составляет 2n 2хр 4с (диплоидный набор, хромосомы двухроматидные, количество молекул ДНК – 4).

Метафаза мейоза I – хромосомы располагаются в плоскости экватора. Но если в метафазе митоза гомологичные хромосомы имеют положение, независимое друг от друга, то в мейозе они лежат рядом – попарно. Генетическая информация прежняя (2n 2хр 4с).

Анафаза I – к полюсам клетки расходятся не половинки хромосом из одной хроматиды, а целые хромосомы, состоящие из двух хроматид. Значит, из каждой пары гомологичных хромосом в дочернюю клетку попадет лишь одна, но двухроматидная хромосома. Их число в новых клетках уменьшится вдвое (редукция числа хромосом). Количество генетической информации на каждом полюсе клетки становится меньше (1n 2хр 2с).

В телофазе первого деления мейоза формируются ядра, ядрышки и делится цитоплазма – образуются две дочерние клетки с гаплоидным набором хромосом, но эти хромосомы состоят из двух хроматид (1n 2хр 2с).

Вслед за первым наступает второе деление мейоза, но ему не предшествует синтез ДНК. После короткой профазы мейоза II двухроматидные хромосомы в метафазе мейоза II располагаются в плоскости экватора и крепятся к нитям веретена деления. Их генетическая информация прежняя – (1n 2хр 2с).

В анафазе мейоза II к противоположным полюсам клетки расходятся хроматиды и в телофазе мейоза II образуются четыре гаплоидные клетки с однохроматидными хромосомами (1n 1хр 1с). Таким образом, в сперматозоидах и яйцеклетках число хромосом уменьшается вдвое. Такие половые клетки образуются у половозрелых особей различных организмов. Процесс формирования гамет называют гаметогенез.

Биологическое значение мейоза:

1.Образование клеток с гаплоидным набором хромосом. При оплодотворении обеспечивается постоянный для каждого вида набор хромосом и постоянное количество ДНК.

2.Во время мейоза происходит случайное расхождение негомологичных хромосом, что приводит к большому числу возможных комбинаций хромосом в гаметах. У человека число возможных комбинаций хромосом в гаметах составляет 2 n , где n – число хромосом гаплоидного набора: 2 23 =8 388 608. Число возможных комбинаций у одной родительской пары 2 23 х 2 23

3.Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом

определяют закономерности наследственной передачи признака от родителей потомству.

Из каждой пары двух гомологичных хромосом (материнской и отцовской), входящих в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится только одна хромосома. При этом она может быть: 1) отцовской хромосомой; 2) материнской хромосомой; 3) отцовской с участком материнской хромосомы; 4) материнской с участком отцовской. Эти процессы приводят к эффективной рекомбинации наследственного материала в гаметах, образуемым организмом. В результате обуславливается генетическая разнородность гамет и потомства.

При объяснении учащиеся заполняют таблицу: «Сравнительная характеристика митоза и мейоза»

Типы деления Митоз (непрямое деление) Мейоз (редукционное деление)
Число делений одно деление два деление
Происходящие процессы Репликация и транскрипция отсутствуют В профазе 1 происходит конъюгация гомологичных хромосом и кроссинговер
К полюсам клетки расходятся хроматиды В первом делении к полюсам клетки расходятся гомологичные хромосомы
Число дочерних клеток 2 4
Набор хромосом в дочерних клетках (n – набор хромосом, хр – хроматиды, с – число ДНК) Число хромосом остается постоянным2n 1хр 2c (хромосомы однохроматидные) Число хромосом уменьшается вдвое 1n 1хр 1c (хромосомы однохроматидные)
Клетки, где происходит деление Соматические клетки Соматические клетки половых органов животных; спорообразующие клетки растений
Значение Обеспечивает бесполое размножение и рост живых организмов Служит для образования половых клеток

Закрепление изученного материала (по табл., тестовая работа).

Литература:

  1. Ю.И. Полянский. Учебник для 10-11 классов средней школы. –М.: «Просвещение», 1992.
  2. И.Н. Пономарева, О.А. Корнилова, Т.Е. Лощилина. Учебник «Биология» 11 класс, базовый уровень, –М.: «Вентана-Граф», 2010.
  3. С.Г. Мамонтов Биология для поступающих в ВУЗЫ. –М.: 2002.
  4. Н. Грин, У.Стаут, Д. Тейлор. Биология в 3 т. –М.: «Мир», 1993.
  5. Н.П. Дубинина. Общая биология. Пособие для учитетеля. –М.: 1990.
  6. Н.Н. Приходченко, Т.П. Шкурат «Основы генетики человека». Уч.пос. – Ростов н/Д: «Феникс», 1997.
© 2024 Сайт по саморазвитию. Вопрос-ответ