Вконтакте Facebook Twitter Лента RSS

Почему процесс конденсации сопровождается нагреванием. Фазовые переходы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 1 г. Сельцо

ПРОЕКТ

ПО ФИЗИКЕ

КИПЕНИЕ ИСПАРЕНИЕ КОНДЕНСАЦИЯ

г. Сельцо

СОДЕРЖАНИЕ

1.Теоретическая часть

1.1. Испарение……………………………………………………………………..3

1.2. Как происходит испарение…………………………………………………..5

1.3. Условия испарения…………………………………………………………...6

1.4. Кипение……………………………………………………………………….7

1.5. Температура кипения………………………………………………………...7

1.6. Испарение и кипение…………………………………………………………8

1.7. Испарение и человек…………………………………………………………8

1.8. Роль испарения в жизни растений…………………………………………..9

1.9. Использование испарения в промышленности и быту…………………...10

1.10. Опасные испарения………………………………………………………..10

1.11. Круговорот воды в природе……………………………………………….11

1.12. Конденсация………………………………………………………………..11

2.Практическая часть

2.1. Испарение воды в стакане………………………………………………….14

2.2. Кипение и испарение………………………………………………………..16

2.3. Конденсация…………………………………………………………………20

3.Заключение…………………………………………………. 22

4.Список используемой литературы………………………... 23

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1.Испарение

Испарение - это переход вещества из жидкого состояния в газообразное (пар), происходящее со свободной поверхности жидкости.

Из повседневных наблюдений известно, что количество любой жидкости (бензина, эфира, воды), находящейся в открытом сосуде, постепенно уменьшается. Жидкость не исчезает бесследно - она превращается в пар.

Испарение - это один из видов парообразования. Другой вид - это кипение.

Механизм испарения . Как происходит испарение? Молекулы любой жидкости находятся в непрерывном и беспорядочном движении, причем, чем выше температура жидкости, тем больше кинетическая энергия молекул. Среднее значение кинетической энергии имеет определенную величину. Но у каждой молекулы кинетическая энергия может быть как больше, так и меньше средней. Если вблизи поверхности окажется молекула с кинетической энергией, достаточной для преодоления сил межмолекулярного притяжения, она вылетит из жидкости. То же самое повторится с другой быстрой молекулой, со второй, третьей и т. д. Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.

Поглощение энергии при испарении. Поскольку при испарении из жидкости вылетают более быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. Это значит, что внутренняя энергия испаряющейся жидкости уменьшается. Поэтому если нет притока энергии к жидкости извне, температура испаряющейся жидкости понижается, жидкость охлаждается (именно поэтому, в частности, человеку в мокрой одежде холоднее, чем в сухой, особенно при ветре).

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно, и температура воды поддерживается постоянной за счет теплообмена с окружающим воздухом, из которого в жидкость поступает необходимое количество теплоты. Значит, чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию.

Количество теплоты, которое необходимо сообщить жидкости для образования единицы массы пара при постоянной температуре, называется теплотой парообразования.

Скорость испарения жидкости. В отличие от кипения испарение происходит при любой температуре, однако с повышением температуры жидкости скорость испарения возрастает. Чем выше температура жидкости, тем больше быстро движущихся молекул имеет достаточную кинетическую энергию, чтобы преодолеть силы притяжения соседних частиц и вылететь за пределы жидкости, и тем быстрее идет испарение.

Если же процесс испарения происходит в закрытом сосуде, то начальное число молекул вылетевших из жидкости, будет превосходить число молекул возвратившихся в нее. Таким образом, плотность пара в сосуде будет медленно увеличиваться. При увеличенной плотности пара увеличится и плотность количества молекул, возвращающихся в жидкость. Через некоторое время число молекул, которые покидают жидкость, сравняется с числом молекул, которые возвращаются в нее. Таким образом, количество парящих молекул над жидкостью станет постоянным. Наступит так называемое динамическое равновесие между паром и жидкостью.

Пар, который находится в динамическом равновесии со своей жидкостью, называется насыщенным. И наоборот, если в пространстве с паром какой-нибудь жидкости может наблюдаться дальнейшее испарение данной жидкости, пар, который находится в этом пространстве, называется ненасыщенным паром.

1.2.Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы. В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние. Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества – она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

1.3.Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого. Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом – вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится. Второе, от чего зависит испарение, – температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются. Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки). И снова о чае. Известен еще одни способ быстрее его остудить – подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар. Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

1.4.Кипение

Кипение - процесс интенсивного , который происходит в жидкости, как на свободной её поверхности, так и внутри её структуры. При этом в объёме жидкости возникают границы разделения , то есть на стенках сосуда образуются пузырьки, которые содержат и . Кипение, как и , является одним из способов парообразования. В отличие от испарения, кипение может происходить лишь при определённой и . Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется . Как правило, температура кипения при нормальном атмосферном давлении приводится как одна из основных характеристик химически чистых . Процессы кипения широко применяются в различных областях человеческой деятельности. Например, является одним из распространённых способов физической питьевой воды. Кипячение воды представляет собой процесс нагревания её до температуры кипения с целью получения .

1.5.Температура кипения

Температура кипения находится в прямо пропорциональной зависимости от давления, оказываемого на всю жидкость, точнее, на ее поверхность. В школьном курсе физике указано, что вода начинает кипеть при температуре в сто градусов по Цельсию. Но мало кто помнит, что данное утверждение верно только в условиях нормального давления. За норму принято считать величину в 101 кПа. Если увеличить давление, то кипение жидкости будет происходить при другой температуре. Это физическое свойство используют производители современных бытовых приборов. Примером может послужить скороварка. Всем хозяйками известно, что в подобных устройствах пища готовится гораздо быстрее, чем в обычных кастрюлях. С чем это связано? С давлением, которое образуется в скороварке. Оно в два раза превышает норму. Поэтому и кипение воды происходит приблизительно при ста двадцати градусов по Цельсию.

1.6.Испарение и кипение

Кипение – это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100°С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура – 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.

Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением .

1.7.Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека. Как известно, при температуре тела 42,2°С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении. Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения – потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры. Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

1.8.Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них. Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его. Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

1.9.Использование испарения в промышленности и быту

Для химической и пищевой промышленности испарение – это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ). Также испарение (в особенности сублимация) используется для очистки различных веществ. Еще одной сферой применения является кондиционирование воздуха Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

1.10.Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они – невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами. К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена

1.11.Круговорот воды в природе

В сильную жару реки, пруды и озера мелеют, вода испаряется, то есть из жидкого состояния переходит в газообразное -- превращается в невидимый пар. В течении дня, вода луж, прудов, озер, рек, морей, влага, содержащаяся в растениях нагревается Солнцем и испаряется, причем тем скорее, чем сильнее нагрета. Можно заметить это, если две одинаковые тарелки наполнить разным количеством воды и одну из них выставить на солнцепек, а другую поместить в тень. Там где вода нагревается солнечными лучами, она будет испаряться заметно быстрее. Ускоряет испарение и ветер. Влажный лист бумаги на ветру высохнет быстрее, чем оставленный там, где воздух спокоен и неподвижен.

В жаркие сухие дни человек потеет, но пот мало его беспокоит: он мгновенно высыхает. А когда стоит влажная жара, то от пота намокает даже одежда. Но если влага постоянно испаряется из морей, рек, озер, если она уходит из растений и исчезает в атмосфере, то почему же тогда Земля не высыхает?

Это не случается потому, что вода совершает постоянный круговорот. Испарившись, она поднимается вместе с нагретым воздухом, вверху водяной пар охлаждается, принимая форму мельчайших капелек. Из них образуются облака, которые ветер несет по небу, постепенно влаги становится все больше и больше, облака превращаются в тучи, и вода возвращается на поверхность земли в виде дождя, снега и града.

1.12.Конденсация

Конденсация (от лат. condensatio - уплотнение, сгущение) - переход вещества из газообразного состояния (пара) в жидкое или твердое состояние.

Известно, что при наличии ветра жидкость испаряется быстрее. Почему? Дело в том, что одновременно с испарением с поверхности жидкости идет и конденсация. Конденсация происходит из-за того, что часть молекул пара, беспорядочно перемещаясь над жидкостью, снова возвращается в нее. Ветер же выносит вылетевшие из жидкости молекулы и не дает им возвращаться.

Конденсация может происходить и тогда, когда пар не соприкасается с жидкостью. Именно конденсацией объясняется, например, образование облаков: молекулы водяного пара, поднимающиеся над землей, в более холодных слоях атмосферы группируются в мельчайшие капельки воды, скопления которых и представляют собой облака. Следствием конденсации водяного пара в атмосфере являются также дождь и роса.

При испарении жидкость охлаждается и, став более холодной, чем окружающая среда, начинает поглощать ее энергию. При конденсации же, наоборот, происходит выделение некоторого количества теплоты в окружающую среду, и ее температура несколько повышается. Количество теплоты, выделяющееся при конденсации единицы массы, равно теплоте испарения.

Конденсация может происходить в объёме (туман, дождь) и на охлаждаемой поверхности. В теплообменных аппаратах – конденсация на охлаждаемой поверхности. Разумеется, при такой конденсации температура поверхности стенки должна быть меньше температуры насыщения. В свою очередь, конденсация на охлаждаемой поверхности может быть двух видов:

    Плёночная конденсация – имеет место, когда жидкость смачивает поверхность, тогда конденсат образует сплошную плёнку.

    Капельная конденсация – когда конденсат – не смачивающая жидкость и собирается на поверхности в капли, которые быстро стекают, оставляя почти всю поверхность чистой.

Если на газовой плите с предельно большим пламенем горелки стоит открытая кастрюля с водой, близкой к кипению,то как только выключить газ, над кастрюлей появляется обильный пар. Оказывается, что при работе горелки конденсация пара происходила на большом расстоянии от кастрюли, конденсат уносится конвекционными потоками воздуха, поэтому сконденсированные частицы пара не видны. Когда горелку выключают, пар начинает конденсироваться над кастрюлей и поэтому становится видимым .

Конденсат на окнах.

Образование конденсата на стеклах происходит в холодное время года. С точки зрения физики, образование конденсата на окнах происходит из-за понижения температуры поверхности ниже температуры . Температура точки росы зависит от температуры и влажности воздуха в помещении. Причина образования конденсата на окнах может состоять как в чрезмерном повышении влажности внутри помещения, вызванном нарушением вентиляции, так и в невысоких теплоизолирующих свойствах стеклопакета, металлопластиковой рамы, оконной коробки, в неправильной глубине монтажа окна в однородной стене, неправильной глубине монтажа относительно слоя стенового утеплителя, в полном отсутствии, либо в некачественном утеплении оконных откосов.

Конденсация пара в трубах . По мере прохождения по трубе пар постепенно конденсируется и на стенках образуется пленка конденсата.

2.ПРАКТИЧЕСКАЯ ЧАСТЬ

В ходе изучения понятий: испарение, кипение и конденсация, я провела несколько опытов, чтобы убедиться в этом на примерах.

    Испарение воды в стакане.

Я взяла два стакана холодной воды (23 ноября), отметила на них уровень и поставила на окно, только один накрыла крышкой.

Сначала я фотографировала через день, условия внешней среды не менялись. По снимкам видно, что уровень воды уменьшается, причем почти одинаково, в открытом стакане, значит происходит испарение. Последняя фотография была сделана 14 декабря (процесс испарения продолжается). Если воду так и оставить, то она полностью испарится. В закрытом стакане уровень жидкости изменился, но совсем не значительно. Значит процесс испарения происходит быстрее на открытых поверхностях.

Во втором опыте, я взяла два стакана с водой, но одна холодная, а вторая горячая. Через 40 минут мы видим, что уровень горячей жидкости меньше, чем холодной. Значит процесс испарения зависит от температуры: чем она выше, тем быстрее испаряется жидкость.

2.Кипение и испарение.

В следующем опыте я проверяла как происходит процесс испарения воды во время кипения: налила холодной воды и поставила на газовую плиту.

Первую минуту ничего не происходит, на потом, по мере нагревания, начинают появляться пузырьки, с каждой секундой все больше и больше.


С течением времени видно, что уровень воды уменьшается, и вода испаряется полностью. Причем, в кастрюлю мы налили воды больше, чем в стакан, а вода в ней испарилась гораздо быстрее. Значит, чем выше температура жидкости, тем быстрее она испаряется.

3.Конденсация.

В следующем опыте мною было проверено явление конденсации. Кастрюлю с водой, которую я кипятила, накрыла крышкой. Мгновенно на ней образовались капельки воды, это пар конденсировался.


В течение нескольких секунд капли начали увеличиваться и стекаться вниз.

Также процесс конденсации можно наблюдать на окнах и входных дверях в холодное время года.

3.ЗАКЛЮЧЕНИЕ

В ходе работы над проектом я, теоретически изучила явления: испарение, кипение, конденсация. Как проходят эти процессы, какие условия необходимы для их протекания, от чего зависит скорость этих явлений, роль их в жизни человека и природы.

Опытным путем я установила, что испарение происходит быстрее в открытом сосуде.

Вывод: скорость испарения жидкости напрямую зависит от площади ее поверхности и доступности воздуха (открытый сосуд).

Также в процессе опытов, я установила, что чем выше температура жидкости, тем процесс испарения идет быстрее.

Вывод: скорость испарения жидкости напрямую зависит от ее температуры, чем выше, тем быстрее.

Также опытным путем я изучила процесс конденсации. Можно сделать вывод, что причиной появления конденсата в нашей жизни (на окнах, входных дверях в холодное время года, в ванной, после принятия душа) связано с повышенной влажностью и перепадами температур.

Таким образом : испарение, кипение и конденсация являются неотъемлемыми и необходимыми явлениями в жизни человека и живой природы.

4.СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Физика 8 класс А. В. Перышкин. М.: 2013 г.

2. Интернет.

Темы кодификатора ЕГЭ : изменение агрегатных состояний вещества, плавление и кристаллизация, испарение и конденсация, кипение жидкости, изменение энергии в фазовых переходах.

Лёд, вода и водяной пар - примеры трёх агрегатных состояний вещества: твёрдого, жидкого и газообразного. В каком именно агрегатном состоянии находится данное вещество - зависит от его температуры и других внешних условий, в которых оно находится.

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы - изменения агрегатных состояний вещества тела. Нас будут интересовать следующие фазовые переходы .

Плавление (твёрдое тело жидкость) и кристаллизация (жидкость твёрдое тело).
Парообразование (жидкость пар) и конденсация (пар жидкость).

Плавление и кристаллизация

Большинство твёрдых тел являются кристаллическими , т.е. имеют кристаллическую решётку - строго определённое, периодически повторяющееся в пространстве расположение своих частиц.

Частицы (атомы или молекулы) кристаллического твёрдого тела совершают тепловые колебания вблизи фиксированных положений равновесия - узлов кристаллической решётки.

Например, узлы кристаллической решётки поваренной соли - это вершины кубических клеток «трёхмерной клетчатой бумаги» (см. рис. 1 , на котором шарики большего размера обозначают атомы хлора (изображение с сайта en.wikipedia.org.)); если дать испариться воде из раствора соли, то оставшаяся соль будет нагромождением маленьких кубиков.

Рис. 1. Кристаллическая решётка

Плавлением называется превращение кристаллического твёрдого тела в жидкость. Расплавить можно любое тело - для этого нужно нагреть его до температуры плавления , которая зависит лишь от вещества тела, но не от его формы или размеров. Температуру плавления данного вещества можно определить из таблиц.

Наоборот, если охлаждать жидкость, то рано или поздно она перейдёт в твёрдое состояние. Превращение жидкости в кристаллическое твёрдое тело называется кристаллизацией или отвердеванием . Таким образом, плавление и кристаллизация являются взаимно обратными процессами.

Температура, при которой жикость кристаллизуется, называется температурой кристаллизации . Оказывается, что температура кристаллизации равна температуре плавления: при данной температуре могут протекать оба процесса. Так, при лёд плавится, а вода кристаллизуется; что именно происходит в каждом конкретном случае - зависит от внешних условий (например, подводится ли тепло к веществу или отводится от него).

Как происходят плавление и кристаллизация? Каков их механизм? Для уяснения сути этих процессов рассмотрим графики зависимости температуры тела от времени при его нагревании и охлаждении - так называемые графики плавления и кристаллизации.

График плавления

Начнём с графика плавления (рис. 2 ). Пусть в начальный момент времени (точка на графике) тело является кристаллическим и имеет некоторую температуру .

Рис. 2. График плавления

Затем к телу начинает подводиться тепло (скажем, тело поместили в плавильную печь), и температура тела повышается до величины - температуры плавления данного вещества. Это участок графика.

На участке тело получает количество теплоты

где - удельная теплоёмкость вещества твёрдого тела, - масса тела.

При достижении температуры плавления (в точке ) ситуация качественно меняется. Несмотря на то, что тепло продолжает подводиться, температура тела остаётся неизменной. На участке происходит плавление тела - его постепенный переход из твёрдого состояния в жидкое. Внутри участка мы имеем смесь твёрдого вещества и жидкости, и чем ближе к точке , тем меньше остаётся твёрдого вещества и тем больше появляется жидкости. Наконец, в точке от исходного твёрдого тела не осталось ничего: оно полностью превратилось в жидкость.

Участок соответствует дальнейшему нагреванию жидкости (или, как говорят, расплава ). На этом участке жидкость поглощает количество теплоты

где - удельная теплоёмкость жидкости.

Но нас сейчас больше всего интересует - участок фазового перехода. Почему не меняется температура смеси на этом участке? Тепло-то подводится!

Вернёмся назад, к началу процесса нагревания. Повышение температуры твёрдого тела на участке есть результат возрастания интенсивности колебаний его частиц в узлах кристаллической решётки: подводимое тепло идёт на увеличение кинетической энергии частиц тела (на самом деле некоторая часть подводимого тепла расходуется на совершение работы по увеличению средних расстояний между частицами - как мы знаем, тела при нагревании расширяются. Однако эта часть столь мала, что её можно не принимать во внимание.).

Кристаллическая решётка расшатывается всё сильнее и сильнее, и при температуре плавления размах колебаний достигает той предельной величины, при которой силы притяжения между частицами ещё способны обеспечивать их упорядоченное расположение друг относительно друга. Твёрдое тело начинает «трещать по швам», и дальнейшее нагревание разрушает кристаллическую решётку - так начинается плавление на участке .

С этого момента всё подводимое тепло идёт на совершение работы по разрыву связей, удерживающих частицы в узлах кристаллической решётки, т.е. на увеличение потенциальной энергии частиц. Кинетическая энергия частиц при этом остаётся прежней, так что температура тела не меняется. В точке кристаллическая структура исчезает полностью, разрушать больше нечего, и подводимое тепло снова идёт на увеличение кинетической энергии частиц - на нагревание расплава.

Удельная теплота плавления

Итак, для превращения твёрдого тела в жидкость мало довести его до температуры плавления. Необходимо дополнительно (уже при температуре плавления) сообщить телу некоторое количество теплоты для полного разрушения кристаллической решётки (т.е. для прохождения участка ).

Это количество теплоты идёт на увеличение потенциальной энергии взаимодействия частиц. Следовательно, внутренняя энергия расплава в точке больше внутренней энергии твёрдого тела в точке на величину .

Опыт показывает, что величина прямо пропорциональна массе тела:

Коэффициент пропорциональности не зависит от формы и размеров тела и является характеристикой вещества. Он называется удельной теплотой плавления вещества . Удельную теплоту плавления данного вещества можно найти в таблицах.

Удельная теплота плавления численно равна количеству теплоты, необходимому для превращения в жидкость одного килограмма данного кристаллического вещества, доведённого до температуры плавления.

Так, удельная теплота плавления льда равна кДж/кг, свинца - кДж/кг. Мы видим, что для разрушения кристаллической решётки льда требуется почти в раз больше энергии! Лёд относится к веществам с большой удельной теплотой плавления и поэтому весной тает не сразу (природа приняла свои меры: обладай лёд такой же удельной теплотой плавления, как и свинец, вся масса льда и снега таяла бы с первыми оттепелями, затопляя всё вокруг).

График кристаллизации

Теперь перейдём к рассмотрению кристаллизации - процесса, обратного плавлению. Начинаем с точки предыдущего рисунка. Предположим, что в точке нагревание расплава прекратилось (печку выключили и расплав выставили на воздух). Дальнейшее изменение температуры расплава представлено на рис. (3) .

Рис. 3. График кристаллизации

Жидкость остывает (участок ), пока её температура не достигнет температуры кристаллизации, которая совпадает с температурой плавления .

С этого момента температура расплава меняться перестаёт, хотя тепло по-прежнему уходит от него в окружающую среду. На участке происходит кристаллизация расплава - его постепенный переход в твёрдое состояние. Внутри участка мы снова имеем смесь твёрдой и жидкой фаз, и чем ближе к точке , тем больше становится твёрдого вещества и тем меньше - жидкости.Наконец,вточке жидкостинеостаётсявовсе-онаполностьюкристаллизовалась.

Следующий участок соответствует дальнейшему остыванию твёрдого тела, возникшего в результате кристаллизации.

Нас опять-таки интересует участок фазового перехода : почему температура остаётся неизменной, несмотря на уход тепла?

Снова вернёмся в точку . После прекращения подачи тепла температура расплава понижается, так как его частицы постепенно теряют кинетическую энергию в результате соударений с молекулами окружающей среды и излучения электромагнитных волн.

Когда температура расплава понизится до температуры кристаллизации (точка ), его частицы замедлятся настолько, что силы притяжения окажутся в состоянии «развернуть» их должным образом и придать им строго определённую взаимную ориентацию в пространстве. Так возникнут условия для зарождения кристаллической решётки, и она действительно начнёт формироваться благодаря дальнейшему уходу энергии из расплава в окружающее пространство.

Одновременно начнётся встречный процесс выделения энергии: когда частицы занимают свои места в узлах кристаллической решётки, их потенциальная энергия резко уменьшается, за счёт чего увеличивается их кинетическая энергия - кристаллизующаяся жидкость является источником тепла (часто у проруби можно увидеть сидящих птиц. Они там греются!). Выделяющееся в ходе кристаллизации тепло в точности компенсирует потерю тепла в окружающую среду, и потому температура на участке не меняется.

В точке расплав исчезает, а вместе с завершением кристаллизации исчезает и этот внутренний «генератор» тепла. Вследствие продолжающегося рассеяния энергии во внешнюю среду понижение температуры возобновится, но только остывать уже будет образовавшееся твёрдое тело (участок ).

Как показывает опыт, при кристаллизации на участке выделяется ровно то же самое количество теплоты , которое было поглощено при плавлении на участке .

Парообразование и конденсация

Парообразование - это переход жидкости в газообразное состояние (в пар ). Существует два способа парообразования: испарение и кипение.

Испарением называется парообразование, которое происходит при любой температуре со свободной поверхности жидкости. Как вы помните из листка «Насыщенный пар», причиной испарения является вылет из жидкости наиболее быстрых молекул, которые способны преодолеть силы межмолекулярного притяжения. Эти молекулы и образуют пар над поверхностью жидкости.

Разные жидкости испаряются с разными скоростями: чем больше силы притяжения молекул друг к другу - тем меньшее число молекул в единицу времени окажутся в состоянии их преодолеть и вылететь наружу, и тем меньше скорость испарения. Быстро испаряются эфир, ацетон, спирт (их иногда называют летучими жидкостями), медленнее - вода, намного медленнее воды испаряются масло и ртуть.

Скорость испарения растёт с повышением температуры (в жару бельё высохнет скорее), поскольку увеличивается средняя кинетическая энергия молекул жидкости, и тем самым возрастает число быстрых молекул, способных покинуть её пределы.

Скорость испарения зависит от площади поверхности жидкости: чем больше площадь, тем большее число молекул получают доступ к поверхности, и испарение идёт быстрее (вот почему при развешивании белья его тщательно расправляют).

Одновременно с испарением наблюдается и обратный процесс: молекулы пара, совершая беспорядочное движение над поверхностью жидкости, частично возвращаются обратно в жидкость. Превращение пара в жидкость называется конденсацией .

Конденсация замедляет испарение жидкости. Так, в сухом воздухе бельё высохнет быстрее, чем во влажном. Быстрее оно высохнет и на ветру: пар сносится ветром, и испарение идёт более интенсивно

В некоторых ситуациях скорость конденсации может оказаться равной скорости испарения. Тогда оба процесса компенсируют друг друга и наступает динамическое равновесие: из плотно закупоренной бутылки жидкость не улетучивается годами, а над поверхностью жидкости в этом случае находится насыщенный пар .

Конденсацию водяного пара в атмосфере мы постоянно наблюдаем в виде облаков, дождей и выпадающей по утрам росы; именно испарение и конденсация обеспечивают круговорот воды в природе, поддерживая жизнь на Земле.

Поскольку испарение - это уход из жидкости самых быстрых молекул, в процессе испарения средняя кинетическая энергия молекул жидкости уменьшается, т.е. жидкость остывает. Вам хорошо знакомо ощущение прохлады и порой даже зябкости (особенно при ветре), когда выходишь из воды: вода, испаряясь по всей поверхности тела, уносит тепло, ветер же ускоряет процесс испарения (nеперь понятно, зачем мы дуем на горячий чай. Кстати сказать, ещё лучше при этом втягивать воздух в себя, поскольку на поверхность чая тогда приходит сухой окружающий воздух, а не влажный воздух из наших лёгких;-)).

Ту же прохладу можно почувствовать, если провести по руке кусочком ваты, смоченным в летучем растворителе (скажем, в ацетоне или жидкости для снятия лака). В сорокаградусную жару благодаря усиленному испарению влаги через поры нашего тела мы сохраняем свою температуру на уровне нормальной; не будь этого терморегулирующего механизма, в такую жару мы бы попросту погибли.

Наоборот, в процессе конденсации жидкость нагревается: молекулы пара при возвращении в жидкость разгоняются силами притяжения со стороны находящихся поблизости молекул жидкости, в результате чего средняя кинетическая энергия молекул жидкости увеличивается (сравните это явление с выделением энергии при кристаллизации расплава!).

Кипение

Кипение - это парообразование, происходящее по всему объёму жидкости.

Кипение оказывается возможным потому, что в жидкости всегда растворено какое-то количество воздуха, попавшего туда в результате диффузии. При нагревании жидкости этот воздух расширяется, пузырьки воздуха постепенно увеличиваются в размерах и становятся видимы невооружённым глазом (в кастрюле с водой они осаждают дно и стенки). Внутри воздушных пузырьков находится насыщенный пар, давление которого, как вы помните, быстро растёт с повышением температуры.

Чем крупнее становятся пузырьки, тем большая действует на них архимедова сила, и определённого момента начинается отрыв и всплытие пузырьков. Поднимаясь вверх, пузырьки попадают в менее нагретые слои жидкости; пар в них конденсируется, и пузырьки сжимаются опять. Схлопывание пузырьков вызывает знакомый нам шум, предшествующий закипанию чайника. Наконец, с течением времени вся жидкость равномерно прогревается, пузырьки достигают поверхности и лопаются, выбрасывая наружу воздух и пар - шум сменяется бульканьем, жидкость кипит.

Пузырьки, таким образом, служат «проводниками» пара изнутри жидкости на её поверхность. При кипении наряду с обычным испарением идёт превращение жидкости в пар по всему объёму - испарение внутрь воздушных пузырьков с последующим выводом пара наружу. Вот почему кипящая жидкость улетучивается очень быстро: чайник, из которого вода испарялась бы много дней, выкипит за полчаса.

В отличие от испарения, происходящего при любой температуре, жидкость начинает кипеть только при достижении температуры кипения - именно той температуры, при которой пузырьки воздуха оказываются в состоянии всплыть и добраться до поверхности. При температуре кипения давление насыщенного пара становится равно внешнему давлению на жидкость (в частности, атмосферному давлению ). Соответственно, чем больше внешнее давление, тем при более высокой температуре начнётся кипение.

При нормальном атмосферном давлении ( атм или Па) температура кипения воды равна . Поэтому давление насыщенного водяного пара при температуре равно Па. Этот факт необходимо знать для решения задач - часто он считается известным по умолчанию.

На вершине Эльбруса атмосферное давление равно атм, и вода там закипит при температуре . А под давлением атм вода начнёт кипеть только при .

Температура кипения (при нормальном атмосферном давлении) является строго определённой для данной жидкости величиной (температуры кипения, приводимые в таблицах учебников и справочников - это температуры кипения химически чистых жидкостей. Наличие в жидкости примесей может изменять температуру кипения. Скажем, водопроводная вода содержит растворённый хлор и некоторые соли, поэтому её температура кипения при нормальном атмосферном давлении может несколько отличаться от ). Так, спирт кипит при , эфир - при , ртуть - при . Обратите внимание: чем более летучей является жидкость, тем ниже её температура кипения. В таблице температур кипения мы видим также, что кислород кипит при . Значит, при обычных температурах кислород - это газ!

Мы знаем, что если чайник снять с огня, то кипение тут же прекратится - процесс кипения требует непрерывного подвода тепла. Вместе с тем, температура воды в чайнике после закипания перестаёт меняться, всё время оставаясь равной . Куда же при этом девается подводимое тепло?

Ситуация аналогична процессу плавления: тепло идёт на увеличение потенциальной энергии молекул. В данном случае - на совершение работы по удалению молекул на такие расстояния, что силы притяжения окажутся неспособными удерживать молекулы неподалёку друг от друга, и жидкость будет переходить в газообразное состояние.

График кипения

Рассмотрим графическое представление процесса нагревания жидкости - так называемый график кипения (рис. 4 ).

Рис. 4. График кипения

Участок предшествует началу кипения. На участке жидкость кипит, её масса уменьшается. В точке жидкость выкипает полностью.

Чтобы пройти участок , т.е. чтобы жидкость, доведённую до температуры кипения, полностью превратить в пар, к ней нужно подвести некоторое количество теплоты . Опыт показывает, что данное количество теплоты прямо пропорционально массе жидкости:

Коэффициент пропорциональности называется удельной теплотой парообразования жидкости (при температуре кипения). Удельная теплота парообразования численно равна количеству теплоты, которое нужно подвести к 1 кг жидкости, взятой при температуре кипения, чтобы полностью превратить её в пар.

Так, при удельная теплота парообразования воды равна кДж/кг. Интересно сравнить её с удельной теплотой плавления льда ( кДж/кг) - удельная теплота парообразования почти в семь раз больше! Это и не удивительно: ведь для плавления льда нужно лишь разрушить упорядоченное расположение молекул воды в узлах кристаллической решётки; при этом расстояния между молекулами остаются примерно теми же. А вот для превращения воды в пар нужно совершить куда большую работу по разрыву всех связей между молекулами и удалению молекул на значительные расстояния друг от друга.

График конденсации

Процесс конденсации пара и последующего остывания жидкости выглядит на графике симметрично процессу нагревания и кипения. Вот соответствующий график конденсации для случая стоградусного водяного пара, наиболее часто встречающегося в задачах (рис. 5 ).

Рис. 5. График конденсации

В точке имеем водяной пар при . На участке идёт конденсация; внутри этого участка - смесь пара и воды при . В точке пара больше нет, имеется лишь вода при . Участок - остывание этой воды.

Опыт показывает, что при конденсации пара массы (т. е. при прохождении участка ) выделяется ровно то же самое количество теплоты , которое было потрачено на превращение в пар жидкости массы при данной температуре.

Давайте ради интереса сравним следующие количества теплоты:

Которое выделяется при конденсации г водяного пара;
, которое выделяется при остывании получившейся стоградусной воды до температуры, скажем, .

Дж;
Дж.

Эти числа наглядно показывают, что ожог паром гораздо страшнее ожога кипятком. При попадании на кожу кипятка выделяется «всего лишь» (кипяток остывает). А вот при ожоге паром сначала выделится на порядок большее количество теплоты (пар конденсируется), образуется стоградусная вода, после чего добавится та же величина при остывании этой воды.

Происходящее со свободной поверхности жидкости.

Сублимацию, или возгонку, т.е. переход вещества из твердого состояния в газообразное, так-же называют испарением.

Из повседневных наблюдений известно, что количество любой жидкости (бензина, эфира, воды), находящейся в открытом сосуде, постепенно уменьшается. Жидкость не исчезает бесследно — она превращается в пар. Испарение — это один из видов парообразования . Другой вид — это кипение.

Механизм испарения.

Как происходит испарение? Молекулы любой жидкости находятся в не-прерывном и беспорядочном движении, причем, чем выше температура жидкости, тем больше кинетическая энергия молекул. Среднее значение кинетической энергии имеет определенную величину. Но у каждой молекулы кинетическая энергия может быть как больше, так и меньше средней. Если вблизи поверхности окажется молекула с кинетической энергией , достаточной для преодоления сил межмолекулярного притяжения, она вылетит из жидкости. То же самое пов-торится с другой быстрой молекулой, со второй, третьей и т. д. Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.

Поглощение энергии при испарении.

Поскольку при испарении из жидкости вылетают более быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. Это значит, что внутренняя энергия испаряющейся жидкости уменьшает-ся. Поэтому если нет притока энергии к жидкости извне, температура испаряющейся жидкости понижается, жидкость охлаждается (именно поэтому, в частности, человеку в мокрой одежде холоднее, чем в сухой, особенно при ветре).

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно, и темпера-тура воды поддерживается постоянной за счет теплообмена с окружающим воздухом, из которого в жидкость поступает необходимое количество теплоты. Значит, чтобы испарение жидкости про исходило без изменения ее температуры, жидкости необходимо сообщать энергию.

Количество теплоты, которое необходимо сообщить жидкости для образования единицы массы пара при постоянной температуре, называется теплотой парообразования.

Скорость испарения жидкости.

В отличие от кипения , испарение происходит при любой темпе-ратуре, однако с повышением температуры жидкости скорость испарения возрастает. Чем выше температура жидкости, тем больше быстро движущихся молекул имеет достаточную кинетичес-кую энергию , чтобы преодолеть силы притяжения соседних частиц и вылететь за пределы жид-кости, и тем быстрее идет испарение.

Скорость испарения зависит от рода жидкости. Быстро испаряются летучие жидкости, у кото-рых силы межмолекулярного взаимодействия малы (например, эфир, спирт, бензин). Если кап-нуть такой жидкостью на руку, мы ощутим холод. Испаряясь с поверхности руки, такая жид-кость будет охлаждаться и отбирать у нее некоторое количество теплоты.

Скорость испарения жидкости зависит от площади ее свободной поверхности. Это объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь свободной поверхности жид-кости, тем большее количество молекул одновременно вылетает в воздух.

В открытом сосуде масса жидкости вследствие испарения постепенно уменьшается. Это свя-зано с тем, что большинство молекул пара рассеивается в воздухе, не возвращаясь в жидкость (в отличие от того, что происходит в закрытом сосуде). Но небольшая часть их возвращается в жидкость, замедляя тем самым испарение. Поэтому при ветре, который уносит молекулы пара, испарение жидкости происходит быстрее.

Применение испарения в технике.

Испарение играет важную роль в энергетике, холодильной технике, в процессах сушки, испарительного охлаждения. Например, в космической технике быстроиспаряющимися веществами покрывают спускаемые аппараты. При прохождении через атмосферу планеты корпус аппарата в результате трения нагревается, и покрывающее его вещество начи-нает испаряться. Испаряясь, оно охлаждает космический аппарат, спасая его тем самым от пере-грева.

Конденсация.

Конденсация (от лат. condensatio — уплотнение, сгущение) — переход вещества из газообраз-ного состояния (пара) в жидкое или твердое состояние.

Известно, что при наличии ветра жидкость испаряется быстрее. Почему? Дело в том, что од-новременно с испарением с поверхности жидкости идет и конденсация. Конденсация происходит из-за того, что часть молекул пара, беспорядочно перемещаясь над жидкостью, снова возвраща-ется в нее. Ветер же выносит вылетевшие из жидкости молекулы и не дает им возвращаться.

Конденсация может происходить и тогда, когда пар не соприкасается с жидкостью. Именно конденсацией объясняется, например, образование облаков: молекулы водяного пара, поднима-ющиеся над землей, в более холодных слоях атмосферы группируются в мельчайшие капельки воды, скопления которых и представляют собой облака . Следствием конденсации водяного пара в атмосфере являются также дождь и роса.

При испарении жидкость охлаждается и, став более холодной, чем окружающая среда, начи-нает поглощать ее энергию. При конденсации же, наоборот, происходит выделение некоторого количества теплоты в окружающую среду, и ее температура несколько повышается. Количество теплоты, выделяющееся при конденсации единицы массы, равно теплоте испарения.

Переход вещества в газообразное состояние называется парообразованием .

Совокупность молекул, вылетевших из вещества, называется паром этого вещества.

При парообразовании увеличиваются средние расстояния между молекулами. В результате потенциальная энергия взаимодействия частиц увеличивается (численное значение ее уменьшается, но она отрицательна). Таким образом, процесс парообразования связан с увеличением внутренней энергии вещества.

Парообразование может происходить непосредственно из твердого состояния - это возгонка (или сублимация ).

Переход из жидкого состояния в газообразное возможен двумя различными процессами: испарением и кипением.

Испарение - это парообразование, происходящее только со свободной поверхности жидкости, граничащей с газообразной средой или с вакуумом.

Экспериментально установлены следующие закономерности:

  1. При одинаковых условиях различные вещества испаряются с различной скоростью (скорость испарения определяется числом молекул, переходящих в пар с поверхности вещества за 1 с).
  2. Скорость испарения тем больше:
    1. чем больше площадь свободной поверхности жидкости;
    2. чем меньше плотность паров над поверхностью жидкости. Скорость увеличивается при движении окружающего воздуха (ветер);
    3. чем больше температура жидкости.
  3. При испарении температура тела понижается.

Механизм испарения можно объяснить с точки зрения MKT: молекулы, находящиеся на поверхности, удерживаются силами притяжения со стороны других молекул вещества. Молекула может вылететь за пределы жидкости лишь тогда, когда ее кинетическая энергия превышает значение той работы, которую необходимо совершить, чтобы преодолеть силы молекулярного притяжения (работа выхода). Поэтому покинуть вещество могут только быстрые молекулы. В результате средняя кинетическая энергия оставшихся молекул уменьшается, а температура жидкости понижается.

Для поддержания температуры испаряющейся жидкости неизменной к ней необходимо подводить некоторое количество теплоты.

Количество теплоты Q, необходимое для превращения жидкости в пар при постоянной температуре, называется теплотой парообразования .

Экспериментально установлено, что Q = Lm, где m - масса испарившейся жидкости, L - удельная теплота парообразования.

Удельное тепло парообразования - величина, численно равная количеству теплоты, необходимому для превращения в пар жидкости единичной массы при неизменной температуре.

Удельная теплота парообразования L зависит от рода жидкости и внешних условий. При увеличении температуры она уменьшается (рис. 1). Это объясняется тем, что все жидкости при нагревании расширяются. Расстояния между молекулами при этом увеличиваются и силы молекулярного взаимодействия уменьшаются. Кроме того, чем больше температура, тем больше средняя кинетическая энергия движения молекул и тем меньше энергии им нужно добавить, чтобы они могли вылететь за пределы поверхности жидкости.

Молекулы пара хаотически движутся. Поэтому скорости некоторых из них будут направлены в сторону жидкости. Достигнув поверхности, они втягиваются в нее силами притяжения со стороны молекул, находящихся на поверхности жидкости, и снова становятся молекулами жидкости. Процесс перехода вещества из газообразного состояния в жидкое называется конденсацией .

Число возвратившихся в жидкость за определенный промежуток времени молекул тем больше, чем больше концентрация молекул пара, а следовательно, чем больше давление пара над жидкостью. Конденсация пара сопровождается нагреванием жидкости. При конденсации выделяется такое же количество теплоты, которое было затрачено при испарении.

>>Физика: Испарение и конденсация

При парообразовании вещество переходит из жидкого состояния в газообразное (пар). Существуют два вида парообразования: испарение и кипение .

Испарение - это парообразование, происходящее со свободной поверхности жидкости.

Как происходит испарение? Мы знаем, что молекулы любой жидкости находятся в непрерывном и беспорядочном движении, причем одни из них движутся быстрее, другие - медленнее. Вылететь наружу им мешают силы притяжения друг к другу. Если, однако, у поверхности жидкости окажется молекула с достаточно большой кинетической энергией, то она сможет преодолеть силы межмолекулярного притяжения и вылетит из жидкости. То же самое повторится с другой быстрой молекулой , со второй, третьей и т. д Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.

Поскольку при испарении из жидкости вылетают наиболее быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. В результате этого температура испаряющейся жидкости понижается: жидкость охлаждается . Именно поэтому, в частности, человек в мокрой одежде чувствует себя холоднее, чем в сухой (особенно при ветре).

В то же время всем известно, что если налить воду в стакан и оставить на столе, то, несмотря на испарение, она не будет непрерывно охлаждаться, становясь все более и более холодной, пока не замерзнет. Что же этому мешает? Ответ очень простой:теплообмен воды с окружающим стакан теплым воздухом.

Охлаждение жидкости при испарении более заметно в том случае, когда испарение происходит достаточно быстро (так что жидкость не успевает восстановить свою температуру благодаря теплообмену с окружающей средой). Быстро испаряются летучие жидкости, у которых силы межмолекулярного притяжения малы, например эфир, спирт, бензин. Если капнуть такой жидкостью на руку, мы ощутим холод. Испаряясь с поверхности руки, такая жидкость будет охлаждаться и отбирать от нее некоторое количество теплоты.

Быстроиспаряющиеся вещества находят широкое применение в технике. Например, в космической технике такими веществами покрывают спускаемые аппараты. При прохождении через атмосферу планеты корпус аппарата в результате трения нагревается, и покрывающее его вещество начинает испаряться. Испаряясь, оно охлаждает космический аппарат, спасая его тем самым от перегрева.

Охлаждение воды при ее испарении используется также в приборах, служащих для измерения влажности воздуха,- психрометрах (от греческого "психрос" - холодный). Психрометр (рис. 81) состоит из двух термометров. Один из них (сухой) показывает температуру воздуха , а другой (резервуар которого обвязан батистом, опущенным в воду) - более низкую температуру, обусловленную интенсивностью испарения свлажного батиста. Чем суше воздух, влажность которого измеряется, тем сильнее испарение и потому тем ниже показания смоченного термометра. И наоборот, чем больше влажность воздуха, тем менее интенсивно идет испарение и потому тем более высокую температуру показывает этот термометр. На основе показаний сухого и увлажненного термометров с помощью специальной (психрометрической) таблицы определяют влажность воздуха, выраженную в процентах. Наибольшая влажность составляет 100% (при такой влажности воздуха на предметах появляется роса). Для человека наиболее благоприятной считается влажность в пределах от 40 до 60%.

С помощью простых опытов легко установить, что скорость испарения увеличивается с ростом температуры жидкости, а также при увеличении площади ее свободной поверхности и при наличии ветра.

Почему при наличии ветра жидкость испаряется быстрее? Дело в том, что одновременно с испарением на поверхности жидкости происходит и обратный процесс - конденсация . Конденсация происходит из-за того, что часть молекул пара, беспорядочно перемещаясь над жидкостью, снова возвращается в нее. Ветер же уносит вылетевшие из жидкости молекулы и не дает им возвращаться назад.

Конденсация может происходить и тогда, когда пар не соприкасается с жидкостью. Именно конденсацией, например, объясняется образование облаков: молекулы водяного пара, поднимающегося над землей, в более холодных слоях атмосферы группируются в мельчайшие капельки воды, скопления которых и представляют собой облака. Следствием конденсации водяного пара в атмосфере являются также дождь и роса.

При испарении жидкость охлаждается и, став более холодной, чем окружающая среда, начинает поглощать ее энергию. При конденсации же, наоборот, происходит выделение некоторого количества теплоты в окружающую среду, и ее температура несколько повышается.

??? 1. Какие два вида парообразования существуют в природе? 2. Что такое испарение ? 3. От чего зависит скорость испарения жидкости? 4. Почему при испарении температура жидкости понижается? 5. Каким образом удается предотвратить спускаемые космические аппараты от перегрева во время прохождения через атмосферу планеты? 6. Что такое конденсация? 7. Какие явления объясняются конденсацией пара? 8. С помощью какого прибора измеряют влажность воздуха? Как он устроен?

Эксперементальные задания . 1. В два одинаковых блюдца налейте по одинаковому количеству воды (например, по три столовые ложки). Одно блюдце поставьте в теплое место, а другое - в холодное. Измерьте время, за которое испарится вода в том и другом блюдцах. Объясните разницу в скорости испарения. 2. Нанесите пипеткой на лист бумаги по капле воды и спирта . Измерьте время, необходимое для их испарения. У какой из этих жидкостей силы притяжения между молекулами меньше? 3. Налейте одинаковое количество воды в стакан и блюдце. Измерьте время, за которое она в них испарится. Объясните разницу в скорости ее испарения.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Sub>Календарно-тематическое планирование физики, тестирование онлайн , задание школьнику 8 класса, курсы учителю физики 8 класса, рефераты согласно школьной программы, готовые домашние задания

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
© 2024 Сайт по саморазвитию. Вопрос-ответ