Вконтакте Facebook Twitter Лента RSS

Твердые вещества: свойства, строение, плотность и примеры. В каком состоянии Твердое состояние вещества расстояние между молекулами

Физика. Молекулы. Расположение молекул в газообразном, жидком и твердом расстоянии.



  1. В газообразном состоянии молекулы не связаны друг с другом, находятся на большом расстоянии друг от друга. Движение Броуновское. Газ может быть относительно легко сжат.
    В жидком - молекулы близко друг к другу, колеблются вместе. Сжатию почти не поддаются.
    В тврдом - молекулы расположены в строгом порядке (в кристаллических рештках), всякое движение молекул отсутствует. Сжатию не поддатся.
  2. Строение вещества и начала химии:
    http://samlib.ru/a/anemow_e_m/aa0.shtml
    (без регистрации и SMS-сообщений, в удобном текстовом формате: можно использовать Ctrl+C)
  3. Никак нельзя согласиться с тем, что в твердом состоянии молекулы не движутся.

    Движение молекул в газах

    В газах обычно расстояние между молекулами и атомами значительно больше размеров молекул, а силы притяжения очень малы. Поэтому газы не имеют собственной формы и постоянного объма. Газы легко сжимаются, потому что силы отталкивания на больших расстояниях также малы. Газы обладают свойством неограниченно расширяться, заполняя весь предоставленный им объм. Молекулы газа движутся с очень большими скоростями, сталкиваются между собой, отскакивают друг от друга в разные стороны. Многочисленные удары молекул о стенки сосуда создают давление газа.

    Движение молекул в жидкостях

    В жидкостях молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее. Эти перескоки происходят периодически. Временной отрезок между такими перескоками получил название среднее время оседлой жизни (или среднее время релаксации) и обозначается буквой?. Иными словами, время релаксации это время колебаний около одного определнного положения равновесия. При комнатной температуре это время составляет в среднем 10-11 с. Время одного колебания составляет 10-1210-13 с.

    Время оседлой жизни уменьшается с повышением температуры. Расстояние между молекулами жидкости меньше размеров молекул, частицы расположены близко друг к другу, а межмолекулярное притяжение велико. Тем не менее, расположение молекул жидкости не является строго упорядоченным по всему объму.

    Жидкости, как и тврдые тела, сохраняют свой объм, но не имеют собственной формы. Поэтому они принимают форму сосуда, в котором находятся. Жидкость обладает таким свойством, как текучесть. Благодаря этому свойству жидкость не сопротивляется изменению формы, мало сжимается, а е физические свойства одинаковы по всем направлениям внутри жидкости (изотропия жидкостей). Впервые характер молекулярного движения в жидкостях установил советский физик Яков Ильич Френкель (1894 1952).

    Движение молекул в тврдых телах

    Молекулы и атомы тврдого тела расположены в определнном порядке и образуют кристаллическую рештку. Такие тврдые вещества называют кристаллическими. Атомы совершают колебательные движения около положения равновесия, а притяжение между ними очень велико. Поэтому тврдые тела в обычных условиях сохраняют объм и имеют собственную форм

  4. В газообразном-движутся рандомно, врубаются
    В жидком-движутся в соответствии друг с другом
    В твердом - не движутся.

Чему равно среднее расстояние между молекулами насыщенного водяного пара при температуре 100° C?

Задача №4.1.65 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(t=100^\circ\) C, \(l-?\)

Решение задачи:

Рассмотрим водяной пар в некотором произвольном количестве, равном \(\nu\) моль. Чтобы определить объем \(V\), занимаемый данным количеством водяного пара, нужно воспользоваться уравнением Клапейрона-Менделеева:

В этой формуле \(R\) — универсальная газовая постоянная, равная 8,31 Дж/(моль·К). Давление насыщенного водяного пара \(p\) при температуре 100° C равно 100 кПа, это известный факт, и его должен знать каждый учащийся.

Чтобы определить количество молекул водяного пара \(N\), воспользуемся следующей формулой:

Здесь \(N_А\) — число Авогадро, равное 6,023·10 23 1/моль.

Тогда на каждую молекулу приходится куб объема \(V_0\), очевидно определяемый по формуле:

\[{V_0} = \frac{V}{N}\]

\[{V_0} = \frac{{\nu RT}}{{p\nu {N_А}}} = \frac{{RT}}{{p{N_А}}}\]

Теперь посмотрите на схему к задаче. Каждая молекула условно находится в своем кубе, расстояние между двумя молекулами может меняться от 0 до \(2d\), где \(d\) — длина ребра куба. Среднее же расстояние \(l\) будет равно длине ребра куба \(d\):

Длину ребра \(d\) можно найти так:

В итоге получим такую формулу:

Переведем температуру в шкалу Кельвина и посчитаем ответ:

Ответ: 3,72 нм.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.


Молекулы очень малы, обычные молекулы невозможно рассмотреть даже в самый сильный оптический микроскоп – но некоторые параметры молекул можно довольно точно посчитать (масса), а некоторые получится только очень грубо оценить (размеры, скорость), да еще хорошо бы понять, что такое «размер молекулы» и про какую именно «скорость молекулы» мы говорим. Итак, масса молекулы находится как «масса одного моля»/«число молекул в моле». Например, для молекулы воды m = 0,018/6·1023 = 3·10-26 кг (можно и поточнее посчитать – число Авогадро известно с хорошей точностью, да и молярную массу любой молекулы несложно найти).
Оценка размера молекулы начинается с вопроса о том, что же считать ее размером. Вот если бы она была идеально отполированным кубиком! Однако, она и не кубик, и не шарик и вообще у нее нет четко очерченных границ. Как быть в таких случаях? Начнем издали. Оценим размер куда более знакомого объекта – школьника. Школьников все мы видели, массу среднего школьника примем равной 60 кг (а потом посмотрим – сильно ли влияет этот выбор на результат), плотность школьника – примерно как у воды (вспомним, что стоит как следует вдохнуть воздух, и после этого можно «висеть» в воде, погрузившись почти полностью, а если выдохнуть, то сразу начинаешь тонуть). Теперь можно найти объем школьника: V = 60/1000 = 0,06 куб. метра. Если теперь принять, что школьник имеет форму куба, то его размер находится как корень кубический из объема, т.е. примерно 0,4 м. Вот такой получился размер – меньше роста (размера «в высоту»), больше толщины (размера «в глубину»). Если мы ничего о форме тела школьника не знаем, то лучше этого ответа мы ничего и не найдем (вместо кубика можно было взять шарик, но ответ получился бы примерно тем же, а считать диаметр шара сложнее, чем ребро куба). А вот если у нас есть дополнительная информация (из анализа фотографий, например), то ответ можно сделать куда более разумным. Пусть стало известно, что «ширина» школьника в среднем вчетверо меньше его высоты, а его «глубина» - еще в три раза меньше. Тогда Н*Н/4*Н/12 = V, отсюда Н = 1,5 м (нет смысла делать более точный расчет такой плохо определенной величины, ориентироваться на возможности калькулятора в таком «расчете» просто неграмотно!). Мы получили вполне разумную оценку роста школьника, если бы мы взяли массу порядка 100 кг (и такие школьники бывают!), получим примерно 1,7 – 1,8 м – тоже вполне разумно.
Оценим теперь размер молекулы воды. Найдем объем, который приходится на одну молекулу в «жидкой воде» - в ней молекулы плотнее всего упакованы (сильнее прижаты друг к другу, чем в твердом, «ледяном» состоянии). Моль воды имеет массу 18 г, его объем 18 куб. сантиметров. Тогда на одну молекулу приходится объем V= 18·10-6/6·1023 = 3·10-29 м3. Если у нас нет информации о форме молекулы воды (или – если мы не хотим учитывать сложную форму молекул), проще всего считать ее кубиком и размер найти точно так, как мы только что находили размер кубического школьника: d= (V)1/3 = 3·10-10 м. Вот и все! Оценить влияние формы достаточно сложных молекул на результат расчета можно, например, так: посчитать размер молекул бензина, считая молекулы кубиками – а после этого провести эксперимент, посмотрев площадь пятна от капли бензина на поверхности воды. Считая пленку «жидкой поверхностью толщиной в одну молекулу» и зная массу капли, можно сравнить размеры, полученные этими двумя способами. Очень поучительный получится результат!
Использованная идея годится и для совсем другого расчета. Оценим среднее расстояние между соседними молекулами разреженного газа для конкретного случая - азот при давлении 1 атм и температуре 300К. Для этого найдем объем, который в этом газе приходится на одну молекулу, а дальше все получится просто. Итак, возьмем моль азота при этих условиях и найдем объем указанной в условии порции, а затем разделим этот объем на число молекул: V= R·T/P·NА= 8,3·300/105·6·1023 = 4·10-26 м3. Будем считать, что объем разделен на плотно упакованные кубические клетки, а каждая молекула «в среднем» сидит в центре своей клетки. Тогда среднее расстояние между соседними (ближайшими) молекулами равно ребру кубической клетки: d = (V)1/3 = 3·10-9 м. Видно, что газ разреженный – при таком соотношении между размерами молекулы и расстоянием между «соседями» сами молекулы занимают довольно малую - примерно 1/1000 часть - объема сосуда. Мы и в этом случае провели расчет очень приближенно - такие не слишком определенные величины, как «среднее расстояние между соседними молекулами» нет смысла считать точнее.

Газовые законы и основы МКТ.

Если газ достаточно разреженный (а это – обычное дело, нам чаще всего приходится иметь дело именно с разреженными газами), то практически любой расчет делается при помощи формулы, связывающей давление Р, объем V, количество газа ν и температуру Т – это знаменитое «уравнение состояния идеального газа» P·V= ν·R·T. Как находить одну из этих величин, если заданы все остальные, это совсем просто и понятно. Но можно сформулировать задачу так, что вопрос будет про какую-нибудь другую величину – например, про плотность газа. Итак, задача: найти плотность азота при температуре 300К и давлении 0,2 атм. Решим ее. Судя по условию газ довольно разреженный (воздух, состоящий на 80% из азота и при существенно большем давлении можно считать разреженным, мы им свободно дышим и легко через него проходим), а если бы это было и не так – других формул у нас все равно нет – используем эту, любимую. В условии не задан объем какой-либо порции газа, зададим его сами. Возьмем 1 кубический метр азота и найдем количество газа в этом объеме. Зная молярную массу азота М= 0,028 кг/моль, найдем массу этой порции – и задача решена. Количество газа ν= P·V/R·T, масса m = ν·М =М·P·V/R·T, отсюда плотность ρ= m/V = М·P/R·T = 0,028·20000/(8,3·300) ≈ 0,2 кг/м3. Выбранный нами объем так и не вошел в ответ, выбирали мы его для конкретности – так проще рассуждать, ведь не обязательно сразу сообразишь, что объем может быть каким угодно, а плотность получится одна и та же. Впрочем, можно и сообразить – «взяв объем, скажем, в пять раз больше, мы увеличим ровно в пять раз количество газа, следовательно, какой бы объем ни взять, плотность получится одна и та же». Можно было просто переписать любимую формулу, подставив в нее выражение для количества газа через массу порции газа и его молярную массу: ν = m/М, тогда сразу выражается отношение m/V = М·P/R·T, а это и есть плотность. Можно было взять моль газа и найти занимаемый им объем, после чего сразу находится плотность, ведь масса моля известна. В общем, чем проще задача, тем больше равноценных и красивых способов ее решать…
Вот еще одна задача, где вопрос может показаться неожиданным: найти разность давлений воздуха на высоте 20 м и на высоте 50 м над уровнем земли. Температура 00С, давление 1 атм. Решение: если мы найдем плотность воздуха ρ при этих условиях, то разность давлений ∆P = ρ·g·∆H. Плотность находим так же, как и в предыдущей задаче, сложность только в том, что воздух – это смесь газов. Считая, что он состоит из 80% азота и 20% кислорода, найдем массу моля смеси: m= 0,8·0,028 + 0,2·0,032 ≈ 0,029 кг. Объем, занимаемый этим молем, V= R·T/P и плотность найдется, как отношение этих двух величин. Дальше все понятно, ответ составит примерно 35 Па.
Плотность газа придется рассчитывать и при нахождении, например, подъемной силы воздушного шара заданного объема, при расчете количества воздуха в баллонах акваланга, необходимого для дыхания под водой в течение известного времени, при расчете количества ишаков, необходимых для перевозки заданного количества паров ртути через пустыню и во многих других случаях.
А вот задача посложнее: на столе шумно кипит электрический чайник, потребляемая мощность составляет 1000 Вт, к.п.д. нагревателя 75% (остальное «уходит» в окружающее пространство). Из носика - площадь «носика» 1 см2 - вылетает струя пара, оценить скорость газа в этой струе. Все необходимые данные взять из таблиц.
Решение. Будем считать, что в чайнике над водой образуется насыщенный пар, тогда из носика вылетает струя насыщенного водяного пара при +1000С. Давление такого пара равно 1 атм, легко найти его плотность. Зная мощность, идущую на испарение Р= 0,75·Р0 = 750 Вт и удельную теплоту парообразования (испарения) r = 2300 кДж/кг, найдем массу пара, образующегося за время τ: m= 0,75Р0·τ/r. Плотность мы знаем, тогда легко найти объем этого количества пара. Остальное уже понятно – представим этот объем в виде столбика с площадью поперечного сечения 1 см2, длина этого столбика, деленная на τ и даст нам скорость вылета (такая длина вылетает за секунду). Итак, скорость вылета струи из носика чайника V = m/(ρ·S·τ) = 0,75P0·τ/(r·ρ·S·τ) = 0,75P0·R·T/(r·P·M·S) = 750·8,3·373/(2,3·106·1·105·0,018·1·10-4) ≈ 5 м/с.
(c) Зильберман А. Р.

Молекулярная физика - это просто!

Силы взаимодействия молекул

Все молекулы вещества взаимодействуют между собой силами притяжения и отталкивания.
Доказательство взаимодействия молекул: явление смачивания, сопротивление сжатию и растяжению, малая сжимаемость твердых тел и газов и др.
Причина взаимодействия молекул - это электромагнитные взаимодействия заряженных частиц в веществе.

Как это объяснить?

Атом состоит из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Заряд ядра равен суммарному заряду всех электронов, поэтому в целом атом электрически нейтрален.
Молекула, состоящая из одного или нескольких атомов, тоже электрически нейтральна.

Рассмотрим взаимодействие между молекулами на примере двух неподвижных молекул.

Между телами в природе могут существовать гравитационные и электромагнитные силы.
Так как массы молекул крайне малы, ничтожно малые силы гравитационного взаимодействия между молекулами можно не рассматривать.

На очень больших расстояниях электромагнитного взаимодействия между молекулами тоже нет.

Но, при уменьшении расстояния между молекулами молекулы начинают ориентироваться так, что их обращенные друг к другу стороны будут иметь разные по знаку заряды (в целом молекулы остаются нейтральными), и между молекулами возникают силы притяжения.

При еще большем уменьшении расстояния между молекулами возникают силы отталкивания, как результат взаимодействия отрицательно заряженных электронных оболочек атомов молекул.

В итоге на молекулу действует сумма сил притяжения и отталкивания. На больших расстояниях преобладает сила притяжения (на расстоянии 2-3 диаметров молекулы притяжение максимально), на малых расстояниях сила отталкивания.

Существует такое расстояние между молекулами, на котором силы притяжения становятся равными силам отталкивания. Такое положение молекул называется положением устойчивого равновесия.

Находящиеся на расстоянии друг от друга и связанные электромагнитными силами молекулы обладают потенциальной энергией.
В положении устойчивого равновесия потенциальная энергия молекул минимальна.

В веществе каждая молекула взаимодействует одновременно со многими соседними молекулами, что также влияет на величину минимальной потенциальной энергии молекул.

Кроме того, все молекулы вещества находятся в непрерывном движении, т.е. обладают кинетической энергией.

Таким образом, структура вещества и его свойства (твердых, жидких и газообразных тел) определяются соотношением между минимальной потенциальной энергией взаимодействия молекул и запасом кинетической энергии теплового движения молекул.

Строение и свойства твердых, жидких и газообразных тел

Строение тел объясняется взаимодействием частиц тела и характером их теплового движения.

Твердое тело

Твердые тела имеют постоянную форму и объем, практически несжимаемы.
Минимальная потенциальная энергия взаимодействия молекул больше кинетической энергии молекул.
Сильное взаимодействие частиц.

Тепловое движение молекул в твердом теле выражается только лишь колебаниями частиц (атомов, молекул) около положения устойчивого равновесия.

Из-за больших сил притяжения молекулы практически не могут менять свое положение в веществе, этим и объясняется неизменность объема и формы твердых тел.

Большинство твердых тел имеет упорядоченное в пространстве расположение частиц, которые образуют правильную кристаллическую решетку. Частицы вещества (атомы, молекулы, ионы) расположены в вершинах - узлах кристаллической решетки. Узлы кристаллической решетки совпадают с положением устойчивого равновесия частиц.
Такие твердые тела называются кристаллическими.


Жидкость

Жидкости имеют определенный объем, но не имеют своей формы, они принимают форму сосуда, в которой находятся.
Минимальная потенциальная энергия взаимодействия молекул сравнима с кинетической энергией молекул.
Слабое взаимодействие частиц.
Тепловое движение молекул в жидкости выражено колебаниями около положения устойчивого равновесия внутри объема, предоставленного молекуле ее соседями

Молекулы не могут свободно перемещаться по всему объему вещества, но возможны переходы молекул на соседние места. Этим объясняется текучесть жидкости, способность менять свою форму.

В жидкостях молекулы достаточно прочно связаны друг с другом силами притяжения, что объясняет неизменность объема жидкости.

В жидкости расстояние между молекулами равно приблизительно диаметру молекулы. При уменьшении расстояния между молекулами (сжимании жидкости) резко увеличиваются силы отталкивания, поэтому жидкости несжимаемы.

По своему строению и характеру теплового движения жидкости занимают промежуточное положение между твердыми телами и газами.
Хотя разница между жидкостью и газом значительно больше, чем между жидкостью и твердым телом. Например, при плавлении или кристаллизации объем тела изменяется во много раз меньше, чем при испарении или конденсации.


Газы не имеют постоянного объема и занимают весь объем сосуда, в котором они находятся.
Минимальная потенциальная энергия взаимодействия молекул меньше кинетической энергии молекул.
Частицы вещества практически не взаимодействуют.
Газы характеризуются полной беспорядочностью расположения и движения молекул.

В газах обычно расстояние между молекулами и атомами значительно больше размеров молекул, а силы притяжения очень малы. Поэтому газы не имеют собственной формы и постоянного объёма. Газы легко сжимаются, потому что силы отталкивания на больших расстояниях также малы. Газы обладают свойством неограниченно расширяться, заполняя весь предоставленный им объём. Молекулы газа движутся с очень большими скоростями, сталкиваются между собой, отскакивают друг от друга в разные стороны. Многочисленные удары молекул о стенки сосуда создают давление газа .

Движение молекул в жидкостях

В жидкостях молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее. Эти перескоки происходят периодически. Временной отрезок между такими перескоками получил название среднее время оседлой жизни (или среднее время релаксации ) и обозначается буквой?. Иными словами, время релаксации – это время колебаний около одного определённого положения равновесия. При комнатной температуре это время составляет в среднем 10 -11 с. Время одного колебания составляет 10 -12 …10 -13 с.

Время оседлой жизни уменьшается с повышением температуры. Расстояние между молекулами жидкости меньше размеров молекул, частицы расположены близко друг к другу, а межмолекулярное притяжение велико. Тем не менее, расположение молекул жидкости не является строго упорядоченным по всему объёму.

Жидкости, как и твёрдые тела, сохраняют свой объём, но не имеют собственной формы. Поэтому они принимают форму сосуда, в котором находятся. Жидкость обладает таким свойством, как текучесть . Благодаря этому свойству жидкость не сопротивляется изменению формы, мало сжимается, а её физические свойства одинаковы по всем направлениям внутри жидкости (изотропия жидкостей). Впервые характер молекулярного движения в жидкостях установил советский физик Яков Ильич Френкель (1894 – 1952).

Движение молекул в твёрдых телах

Молекулы и атомы твёрдого тела расположены в определённом порядке и образуют кристаллическую решётку . Такие твёрдые вещества называют кристаллическими. Атомы совершают колебательные движения около положения равновесия, а притяжение между ними очень велико. Поэтому твёрдые тела в обычных условиях сохраняют объём и имеют собственную форму.

© 2024 Сайт по саморазвитию. Вопрос-ответ