Вконтакте Facebook Twitter Лента RSS

От чего зависят магнитные свойства вещества. Магнитные свойства вещества

Намагничивание вещества. Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничеваются т. е. сами становятся источниками магнитного поля. В результате этого вектор магнитной индукции при наличии вещества отличается от вектора магнитной индукции в вакууме.

Гипотеза Ампера. Причина, вследствие которой тела обладают магнитными свойствами, была установлена французским ученым Ампером . Сначала, под непосредственным впечатлением от наблюдения за поворачивающейся вблизи проводника с током магнитной стрелкой в опытах Эрстеда Лмиер предположил, что магнетизм Земли вызван токами, проходящими внутри земного шара. Главный шаг был сделан: магнитные свойства тела можно объяснить циркулирующими внутри него токами. Далее Ампер пришел к общему заключению: магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него. Этот решающий шаг от возможности объяснения магнитных свойств тела токами к категорическому утверждению, что магнитные взаимодействия - это взаимодействия токов, - свидетельство большой научной смелости Ампера.

Согласно гипотезе Ампера внутри молекул и атомов циркулируют элементарные электрические токи. (Теперь мы хорошо знаем, что эти токи образуются вследствие движения электронов в атомах.) Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу из-за теплового движения молекул (рис. 1.28, а), то их действия взаимно компенсируются, и никаких магнитных свойств тело не обнаруживает. В намагниченном состоянии элементарные токи в теле ориентированы так, что их действия складываются (рис. 1.28, б).

Гипотеза Ампера объясняет, почему магнитная стрелка и рамка (контур) с током в магнитном поле ведут себя одинаково (см. § 2). Стрелку можно рассматривать как совокупность маленьких контуров с током, ориентированных одинаково.

Наиболее сильные магнитные поля создают вещества, называемые ферромагнетиками. Магнитные поля создаются ферромагнетиками не только вследствие обращения электронов вокруг ядер, но и вследствие их собственного вращения.

Собственный вращательный момент (момент импульса) электрона называется спином. Электроны всегда как бы вращаются вокруг своей оси и, обладая зарядом, создают магнитное поле наряду с полем, появляющимся за счет их орбитального движения вокруг ядер. В ферромагнетиках существуют области с параллельными ориентациями спинов, называемые доменами; размеры доменов порядка 0,5 мкм. Параллельная ориентация спинов обеспечивает минимум потенциальной энергии. Если ферромагнетик не намагничен, то ориентация доменов хаотична, и суммарное магнитное поле, создаваемое доменами, равно нулю. При включении внешнего магнитного поля домены ориентируются вдоль линий магнитной индукции этого поля, и индукция магнитного поля в ферромагнетиках увеличивается, становясь в тысячи и даже миллионы раз больше индукции внешнего поля.

Температура Кюри. При температурах, больших некоторой определенной для данного ферромагнетика, его ферромагнитные свойства исчезают. Эту температуру называют температурой Кюри по имени открывшего данное явление французского ученого. Если достаточно сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Температура Кюри для железа 753 °С, для никеля 365 °С, а для кобальта 1000 °С. Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100 °С.

Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А. Г. Столетовым (1839-1896).

Ферромагнетики и их применение. Хотя ферромагнитных тел в природе не так уж много, именно их магнитные свойства получили наибольшее практическое применение. Железный или стальной сердечник в катушке во много раз усиливает создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромагнетиков.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т. е. создает магнитное поле в окружающем пространстве. Это объясняется тем, что домены не возвращаются в прежнее положение и их ориентация частично сохраняется. Благодаря этому существуют постоянные магниты.

Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т. д.

Большое применение получили ферриты ферромагнитные материалы, не проводящие электрического тока. Они представляют собой химические соединения оксидов железа с оксидами других веществ. Один из известных ферромагнитных материалов - магнитный железняк - является ферритом.

Магнитная запись информации. Из ферромагнегикои изготовляют магнитные ленты и тонкие магнитные пленки. Магнитные ленты широко используют для звукозаписи в магнитофонах и для видеозаписи в видеомагнитофонах.

Магнитная лента представляет собой гибкую основу из полихлорвинила или других веществ. На нее наносится рабочий слой в виде магнитного лака, состоящего из очень мелких игольчатых частиц железа или другого ферромагнетика и связующих веществ.

Запись звука производят на ленту с помощью электромагнита, магнитное поле которого изменяется в такт со звуковыми колебаниями. При движении ленты вблизи магнитной головки различные участки пленки намагничиваются. Схема магнитной индукционной головки показана на рисунке 1.29, а, где 1 - сердечник электромагнита; 2 - магнитная лента; 3 - рабочий зазор; 4 - обмотка электромагнита.

При воспроизведении звука наблюдается обратный процесс: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают на динамик магнитофона.

Тонкие магнитные пленки состоят из слоя ферромагнитного материала толщиной от 0,03 до 10 мкм.


Их применяют в запоминающих устройствах электронно-вычислительных машин (ЭВМ). Магнитные пленки предназначены для записи, хранения и воспроизведения информации . Их наносят на тонкий алюминиевый диск или барабан. Информацию записывают и воспроизводят примерно так же, как и в обычном магнитофоне. Запись информации в ЭВМ можно производить и на магнитные ленты.

Развитие технологии магнитной записи привело к появлению магнитных микроголовок, которые используются в ЭВМ, позволяющих создавать немыслимую ранее плотность магнитной записи. На ферромагнитном жестком диске диаметром меньше 8 см хранится до нескольких терабайт (10 12 байт) информации. Считывание и запись информации на таком диске осуществляется с помощью микроголовки, расположенной на поворотном рычаге (рис. 1.29, б). Сам диск вращается с огромной скоростью, и головка плавает над ним в потоке воздуха, что предотвращает возможность механического повреждения диска.

Все вещества, помещенные в магнитное поле, создают собственное поле. Наиболее сильные поля создают ферромагнетики. Из них делают постоянные магниты, так как поле ферромагнетика не исчезает после выключения намагничивающего поля. Ферромагнетики широко применяются на практике.


1. Какие вещества называют ферромагнетиками!
2. Для каких целей применяют ферромагнитные материалы!
3. Как осуществляется запись информации в ЭВМ!

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Любое вещество в мире имеет определенные магнитные свойства. Измеряются они магнитной проницаемостью. В этой статье мы рассмотрим магнитные свойства вещества.

Гипотеза Ампера

Магнитная проницаемость показывает во сколько раз меньше или больше индукция магнитного поля в данной среде индукции магнитного поля в вакууме.

Намагниченным называется то вещество, которое создает собственное магнитное поле. Намагниченность возникает, если вещество поместить во внешнее магнитное поле.

Французский ученый Ампер установил причину, следствием которой является обладание телами магнитных свойств. В гипотезе Ампера говорится о том, что внутри вещества имеются микроскопические электрические токи (электрон имеет собственный магнитный момент, имеющий квантовую природу, орбитальное движение в атомах электронов). Именно ими и определяются магнитные свойства вещества. Если токи имеют неупорядоченные направления, то магнитные поля, которые они порождают, компенсируют друг друга. Тело оказывается не намагничено. Внешнее магнитное поле упорядочивает эти токи. Вследствие этого в веществе возникает собственное магнитное поле. Это и есть намагниченность вещества.

Именно по реакции веществ на внешнее магнитное поле и по упорядоченности их внутренней структуры, определяют магнитные свойства вещества. В соответствии с этими параметрами их делят на такие группы:

  • Парамагнетики
  • Диамагнетики
  • Ферромагнетики
  • Антиферромагнетики

Диамагнетики и парамагнетики

  • Вещества, которые имеют отрицательную магнитную восприимчивость, не зависящую от напряженности магнитного поля, называются диамагнетики. Давайте разберемся, какие магнитные свойства вещества, называются отрицательной магнитной восприимчивостью. Это когда к телу подносится магнит, и оно при этом отталкивается, а не притягивается. К диамагнетикам относятся например, инертные газы, водород, фосфор, цинк, золото, азот, кремний, висмут, медь, серебро. То есть это вещества, которые находятся в сверхпроводящем состоянии или имеющие ковалентные связи.
  • Парамагнетики. У этих веществ магнитная восприимчивость тоже не зависит от того, какая напряженность поля существует. Она при этом положительная. То есть при сближении парамагнетика с постоянно действующим магнитом, возникает сила притягивания. К ним можно отнести алюминий, платину, кислород, марганец, железо.

Ферромагнетики

Вещества, у которых высокая положительная магнитная восприимчивость, называются ферромагнетиками. У этих веществ, в отличие от диамагнетиков и парамагнетиков, магнитная восприимчивость зависит от температуры и напряженности магнитного поля, причем в значительной мере. К ним относятся кристаллы никеля и кобальта.

Антиферромагнетики и ферримагнетики

  • Вещества, у которых во время нагревания совершается фазовый переход данного вещества, сопровождающегося появлением парамагнитных свойств, называются антиферромагнетиками. Если температура становится, ниже какой-то определенной, эти свойства у вещества наблюдаться не будут. Примерами этих веществ будут марганец и хром.
  • Ферримагнетики характеризуются присутствием в них некомпенсированного антиферромагнетизма. Их магнитная восприимчивость тоже зависит от температур и напряженности магнитного поля. Но отличия у них все же, есть. К этим веществам можно отнести различные оксиды.

Все вышеперечисленные магнетики можно еще разделить на 2 категории:

  • Магнитотвердые материалы. Это материалы с высоким значением коэрцитивной силы. Для их перемагничивания необходимо создать мощное магнитное поле. Эти материалы применяются в изготовлении постоянных магнитов.
  • Магнитомягкие материалы, напротив, имеют маленькую коэрцитивную силу. При слабых магнитных полях они способны войти в насыщение. На перемагничивание у них малые потери. Из-за этого эти материалы применяются для изготовления сердечников для электрических машин, которые работают на переменном токе. Это, например, трансформатор тока и напряжения, или генератор, или асинхронный двигатель.

Мы рассмотрели все основные магнитные свойства вещества и разобрались, какие виды магнетиков существуют.

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВ

Магнетизм - фундаментальное свойство материи. С глубокой древности известно свойство постоянных магнитов притягивать железные предметы. Много веков среди мореплавателей существовала легенда о магнитной скале, которая якобы способна притянуть из слишком близко подплывшего к ней корабля железные гвозди и разрушить его. К счастью, такое сильное магнитное поле может существовать только в окрестностях нейтронных звезд. Развитие электромагнетизма позволило создать электромагниты более сильные, чем существующие в природе постоянные. Вообще различные приборы и устройства, основанные на использовании электромагнитных явлений, распространены настолько широко, что сейчас без них нельзя уже представить жизни.

Однако с магнитным полем взаимодействуют не только постоянные магниты, но и все остальные вещества. Магнитное поле, взаимодействуя с веществом, изменяет свою величину по сравнению с вакуумом (здесь и далее все формулы записаны в системе СИ):

где m0 - магнитная постоянная, равная 4p " 10-7 Гн/м, m - магнитная проницаемость вещества, B - магнитная индукция (в Тл), H - напряженность магнитного поля (в А/м). Для большинства веществ m очень близка к единице, поэтому в магнетохимии, где основным объектом является молекула, удобнее использовать величину c, определяемую уравнением, которая называется магнитной восприимчивостью. c можно отнести к единице объема, массы или количества вещества, тогда она называется соответственно объемной (безразмерной) cv , удельной cd (в см3/г) или молярной cм (в см3/моль) магнитной восприимчивостью. Понятно, что, следуя формуле (2), c вакуума равна нулю. Вещества можно разделить на две категории: те, которые ослабляют магнитное поле (c 0), - парамагнетиками (рис. 1). Можно представить себе, что в неоднородном магнитном поле на диамагнетик действует сила, выталкивающая его из поля, на парамагнетик, наоборот, - втягивающая. На этом основаны рассмотренные ниже методы измерения магнитных свойств веществ. Диамагнетики (а это подавляющее большинство органических и высокомолекулярных соединений) и главным образом парамагнетики являются объектами изучения магнетохимии.

Диамагнетизм - важнейшее свойство материи, обусловленное тем, что под действием магнитного поля электроны в заполненных электронных оболочках (которые можно представить как маленькие проводники) начинают прецессировать, а, как известно, любое движение электрического заряда вызывает магнитное поле, которое по правилу Ленца будет направлено так, чтобы уменьшить воздействие со стороны внешнего поля. Электронную прецессию при этом можно рассматривать как круговые токи. Диамагнетизм свойствен всем веществам, кроме атомарного водорода, потому что у всех веществ имеются спаренные электроны и заполненные электронные оболочки.

Парамагнетизм обусловлен неспаренными электронами, которые называются так потому, что их собственный магнитный момент (спин) ничем не уравновешен (соответственно спины спаренных электронов направлены в противоположные стороны и компенсируют друг друга). В магнитном поле спины стремятся выстроиться по направлению поля, усиливая его, хотя этот порядок и нарушается хаотическим тепловым движением. Поэтому понятно, что парамагнитная восприимчивость зависит от температуры - чем ниже температура, тем выше значение cм. В простейшем случае это выражается зависимостью, которая называется законом Кюри: где C - константа Кюри, или законом Кюри-Вейсса, где q - поправка Вейсса. Этот вид магнитной восприимчивости еще называют ориентационным парамагнетизмом, так как его причина - ориентация элементарных магнитных моментов во внешнем магнитном поле.

Магнитные свойства электронов в атоме можно описывать двумя способами. В первом способе считается, что собственный (спиновый) магнитный момент электрона не оказывает влияния на орбитальный (обусловленный движением электронов вокруг ядра) момент или наоборот. Точнее, такое взаимное влияние есть всегда (спин-орбитальное взаимодействие), но для 3d-ионов оно мало, и магнитные свойства можно с достаточной точностью описывать двумя квантовыми числами L (орбитальное) и S (спиновое). Для более тяжелых атомов такое приближение становится неприемлемым и вводится еще одно квантовое число полного магнитного момента J, которое может принимать значения от | L + S | до | L - S | . Ван-Флек рассмотрел энергетические вклады орбиталей в зависимости от влияния магнитного поля (согласно квантовомеханической теории возмущений их можно разложить в ряд и суммировать): где H - напряженность магнитного поля и соответственно E (0) - вклад, независимый от внешнего поля, E (1) - вклад, прямо пропорциональный полю, и т.д. При этом оказалось, что энергия нулевого порядка определяется спин-орбитальным взаимодействием, важным в описании химических связей:

где l - константа спин-орбитального взаимодействия. Энергия первого порядка (взаимодействия магнитного момента неспаренного электрона (m = gbS) с магнитным полем H) равна

где g - фактор Ланде, обычно равный двум для большинства соединений, b - магнетон Бора, равный 9,27 " 10-19 эрг/Э (напомним, что энергия магнитных взаимодействий - это скалярное произведение векторов магнитных моментов m и H). E (2) - энергетический вклад, который придется принять на веру, так как он зависит от тонких особенностей электронного строения и его сложно объяснить с точки зрения классической физики. Следует обратить внимание на малость величины энергии магнитного взаимодействия (для комнатных температур и магнитных полей, обычных в лаборатории, энергия магнитных взаимодействий на три-четыре порядка меньше, чем энергия теплового движения молекул).

После математических преобразований выражение для макроскопической магнитной восприимчивости с учетом больцмановского распределения ансамбля магнитных моментов по энергетическим уровням принимает вид (его вывод изложен, например, в )

Это и есть уравнение Ван-Флека - основное в магнетохимии, связывающее магнитные свойства со строением молекул. Здесь NA - число Авогадро, k - постоянная Больцмана. С некоторыми крайними случаями его мы уже встречались выше. Если = 0, а можно пренебречь, то мы получаем в результате закон Кюри (ср. уравнение (3)), но в более строгой форме.

Видно, что закон Кюри отражает так называемый чисто спиновый магнетизм, характерный для большинства парамагнитных соединений, например солей меди, железа, никеля и других переходных металлов. Если = 0 и @ kT, то уравнение Ван-Флека значительно упрощается:где Na - температурно независимый (ван-флековский) парамагнетизм. Как видно из изложенного, ван-флековский парамагнетизм - явление чисто квантовое и необъяснимо с позиций классической физики. Его можно представить как примешивание к основному состоянию молекулы возбужденных энергетических уровней .

Существует довольно много веществ, которые при понижении температуры ведут себя сначала как парамагнетики, а затем при достижении определенной температуры резко меняют свои магнитные свойства. Самый известный пример - ферромагнетики и вещество, по которому они получили свое название, - железо, атомные магнитные моменты которого ниже температуры Кюри (в этом случае равной TC = 770?C) выстраиваются в одном направлении, вызывая спонтанную намагниченность. Однако макроскопической намагниченности при отсутствии поля не возникает, так как образец самопроизвольно разделяется на области размером около 1 мкм, называемые доменами, в пределах которых элементарные магнитные моменты направлены одинаково, но намагниченности разных доменов ориентированы случайно и в среднем компенсируют друг друга. Силы, вызывающие ферромагнитный переход, можно объяснить только при помощи законов квантовой механики.

Антиферромагнетики характеризуются тем, что спиновые магнитные моменты при температуре антиферромагнитного перехода (температура Нееля TN) упорядочиваются так, что взаимно компенсируют друг друга. Максимальное значение магнитной восприимчивости достигается при TN , выше которой c уменьшается по закону Кюри-Вейсса, ниже - вследствие так называемых обменных взаимодействий. Антиферромагнетиками являются, например, MnO и KNiF3 .

Если компенсация магнитных моментов неполная, то такие вещества называются ферримагнетиками, например Fe2O3 и FeCr2O4 . Последние три класса соединений (табл. 1) являются твердыми телами и изучаются в основном физиками. За последние десятилетия физики и химики создали новые магнитные материалы, более подробно о свойствах которых можно узнать в .

В молекуле, содержащей неспаренный электрон, остальные (спаренные) электроны ослабляют магнитное поле, но вклад каждого из них на два-три порядка меньше. Однако если мы хотим очень точно измерить магнитные свойства неспаренных электронов, то должны вводить так называемые диамагнитные поправки, особенно для больших органических молекул, где они могут достигать десятков процентов. Диамагнитные восприимчивости атомов в молекуле складываются друг с другом согласно правилу аддитивности Паскаля-Ланжевена . Для этого диамагнитные восприимчивости атомов каждого сорта умножают на количество таких атомов в молекуле, а затем вводят конститутивные поправки на особенности строения (двойные и тройные связи, ароматические кольца и т.п.). Перейдем к рассмотрению того, как же экспериментально изучают магнитные свойства веществ.

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗМЕРЕНИЕ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ

Основные экспериментальные методы определения магнитной восприимчивости были созданы еще в прошлом веке. Согласно методу Гуи (рис. 2, а), измеряется изменение веса образца в магнитном поле по сравнению с его отсутствием, которое равно где Dmg = F - сила, воздействующая на вещество в градиенте магнитного поля, c - измеряемая магнитная восприимчивость вещества, c0 - магнитная восприимчивость среды (воздуха), S - площадь поперечного сечения образца, Hmax и Hmin - максимальная и минимальная напряженность внешнего магнитного поля.

По методу Фарадея (рис. 2, б) измеряется сила, действующая на образец в неоднородном магнитном поле:

Образец выбирается малым, чтобы H0dH / dz в его пределах оставалось постоянной, а максимальное значение параметра достигается выбором специального профиля наконечников магнита. Основное отличие метода Гуи от метода Фарадея заключается в том, что в первом случае поддерживается неоднородность по (протяженному) образцу, а во втором - по магнитному полю.

Метод Квинке (рис. 2, в) применяется только для жидкостей и растворов. В нем измеряется изменение высоты столбика жидкости в капилляре под действием магнитного поля.

При этом для диамагнитных жидкостей высота столбика понижается, для парамагнитных повышается.

По методу вискозиметра измеряется время истечения жидкости через малое отверстие при включенном (tH) и выключенном (t0) магнитном поле. Время истечения парамагнитных жидкостей в магнитном поле заметно меньше, чем при отсутствии поля, для диамагнитных - наоборот. Разность двух времен истечения определяется магнитной восприимчивостью, а значение калибровочной константы k определяется при помощи измерения жидкости с известной магнитной восприимчивостью. Объемные магнитные восприимчивости некоторых распространенных растворителей приведены ниже.

Магнитную восприимчивость можно измерить и при помощи ЯМР-спектрометра. О физических основах метода ЯМР можно прочитать в . Мы ограничимся лишь тем, что отметим: величина химического сдвига сигнала ЯМР в общем случае определяется не только константой экранирования, которая является мерой электронной плотности на исследуемом ядре, но и магнитной восприимчивостью образца. Для образца в форме прямоугольного параллелепипеда химический сдвиг определяется еще и ориентацией образца в магнитном поле,где калибровочные константы A и B определяются измерением двух жидкостей с известной магнитной восприимчивостью (чаще всего воды и ацетона). Этот метод был развит на кафедре неорганической химии Казанского университета и является единственным, который позволяет производить калибровку прибора по диамагнитным стандартам, а затем проводить измерения также и с парамагнитными образцами . Таким образом были измерены магнитные восприимчивости многих веществ. Что же они позволили узнать об их строении?

Полученное значение магнитной восприимчивости для парамагнетиков определяется количеством неспаренных электронов (ср. с (9) для одного неспаренного электрона)

Таким образом можно определить спиновое квантовое число S, а следовательно, и число неспаренных электронов. Следует отметить, что в реальных соединениях g-фактор несколько изменяется от величины "чисто спинового" значения, равного, как отмечалось выше, двум.

Значения cм парамагнитных веществ малы и не очень удобны при объяснении строения соединений. Поэтому чаще парамагнитную восприимчивость характеризуют эффективным магнитным моментом meff , который определяется уравнением.

Тогда при температуре 298 К "чисто спиновое" значение для одного неспаренного электрона ms = = 1,73 магнетона Бора (mБ), для двух - 3,46 mБ и т.д. (табл. 2). Вклад других факторов, в первую очередь спин-орбитального взаимодействия, отражается на величине g-фактора и приводит к тому, что meff отличается от ms.

Знание количества неспаренных электронов помогает понять некоторые особенности размещения элементов в Периодической системе Д.И. Менделеева. Так, электронные оболочки, заполненные полностью либо точно наполовину, обладают повышенной устойчивостью. С возрастанием относительной атомной массы мы впервые сталкиваемся с этим у хрома. Сравним электронные конфигурации в основном состоянии: Sc 3d 14s 2, Ti 3d 24s 2, V 3d 34s 2, следующий хром не 3d 44s 2, а 3d 54s 1, более устойчивая полузаполненная оболочка подчеркнута:

А установлено это именно по измерениям магнитной восприимчивости, когда было обнаружено, что атом хрома содержит шесть неспаренных электронов, а не четыре. Правда, для этого пришлось выполнить довольно тонкие измерения на изолированных атомах в газовой фазе, так как магнитные свойства проводников не связаны с числом неспаренных электронов (потому что валентные электроны в металлах не привязаны к определенным атомам, а хаотически движутся по всему кристаллу), а определяются квантовыми законами (так называемые диамагнетизм Ферми и парамагнетизм Ландау ). В то же время, например, порядок заполнения 5d- и 4f-орбиталей в ряду лантанидов не изменяет числа неспаренных электронов, поэтому правильные электронные конфигурации были установлены только в 60-е годы путем квантовомеханических расчетов (по магнитным измерениям нельзя различить конфигурации 5d 1 и 4f 1). Тем не менее магнетохимические исследования позволяют установить электронную конфигурацию, как, наверное, уже заметил внимательный читатель, соединений переходных металлов, которые составляют основу химии координационных (комплексных) соединений.

Координационные соединения образуются, как правило, за счет донорно-акцепторной связи, то есть неподеленные пары электронов лигандов занимают вакантные места на орбиталях центрального атома. При этом количество неспаренных электронов и магнитный момент ионов-комплексообразователей остается таким же, как и у свободного иона в газовой фазе. Это справедливо для аквакомплексов переходных металлов, например железа(II) (рис. 3). Однако существуют также магнитно-аномальные комплексы, магнитный момент которых ниже, чем у газообразного иона. Их электронную структуру можно объяснить в рамках метода валентных связей следующим образом. Очень многие комплексные соединения имеют координационное число шесть. Шесть лигандов симметрично расположены в вершинах октаэдра. Для того чтобы получить шесть гибридных орбиталей, в их образовании должны принять участие шесть валентных орбиталей центрального атома: такое перераспределение электронной плотности называется sp3d 2-гибридизацией (ср. с sp3-гибридизацией атома углерода в алканах, где четыре связи направлены к вершинам тетраэдра). Обратите внимание, что в образовании гибридных орбиталей принимают участие d-орбитали с таким же порядковым номером, что и s, p-орбитали. Это объясняется тем, что расположенные ниже по энергии внутренние d-орбитали заняты собственными электронами иона металла. Для того чтобы занять расположенные ниже по энергии орбитали, лиганды должны вынудить собственные электроны иона металла спариться и освободить внутренние d-орбитали для так называемой d 2sp 3-гибридизации. Это могут сделать только лиганды сильного поля, образующие прочные связи с ионом металла, например цианид-ионы в комплексном гексацианоферрате(II) (см. рис. 3).

Соответственно первый тип комплексов, обладающий высоким магнитным моментом, называется внешнеорбитальным комплексом, а второй тип с пониженным магнитным моментом - внутриорбитальным комплексом. Это различие, приводящее к изменению числа неспаренных электронов в комплексе, приводит к изменению магнитных моментов внешне- и внутриорбитальных комплексов соответственно и, вызвано энергетической неравноценностью соответствующих d-орбиталей (обычно ее называют энергией расщепления в поле лигандов и обозначают D или 10Dq ).

По способности образовывать внутриорбитальные комплексы (по величине D) все лиганды можно расположить в ряд, который называется спектрохимическим рядом лигандов:

CN- > NO2- > SO32- > NH3 > NCS- > H3O >

> OH- > F- > Cl- > Br- > I-

Он получил свое название, потому что окраска комплекса зависит от положения лиганда в этом ряду, и в этом проявляется связь оптических и магнитных свойств координационных соединений .

Таким образом, измеряя магнитную восприимчивость, можно легко судить о степени окисления и геометрии первой координационной сферы в комплексе. Данные по магнитной восприимчивости ряда ионов переходных металлов и лантанидов приведены в табл. 2. Видно, что магнитные свойства 3d-ионов в большинстве случаев хорошо соответствуют чисто спиновым значениям ms , а для объяснения магнитных свойств лантанидов требуется уже более сложная модель с привлечением упомянутого выше квантового числа J.

Известно, что большинство важных на практике химических реакций протекают в растворах, к ним относятся также и реакции комплексообразования, поэтому в следующем разделе рассмотрим магнитные свойства растворов, в которых соединения переходных металлов реализуются в виде комплексов.

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ РАСТВОРОВ

При переходе от твердого тела к раствору следует учитывать магнитные восприимчивости растворителя и всех растворенных веществ. При этом простейшим способом такого учета будет суммирование вкладов всех компонентов раствора по правилу аддитивности. Принцип аддитивности - один из основополагающих принципов в обработке экспериментальных данных. Временами он даже подводит экспериментаторов, потому что человеческому разуму трудно представить себе другой механизм взаимодействия разнообразных факторов, помимо простого их сложения. Любые отклонения от него чаще связывают с тем, что сам принцип аддитивности выполняется, а компоненты раствора изменяют свои свойства. Поэтому принимается, что магнитная восприимчивость раствора равна сумме магнитных восприимчивостей отдельных компонентов с учетом концентрации где ci - концентрация (в моль/л), cмi - молярная магнитная восприимчивость i-го компонента раствора, коэффициент 1/1000 используется для перехода к молярной концентрации. При этом суммирование производится по всем растворенным веществам и растворителю . Можно заметить, что вклады парамагнитных и диамагнитных веществ в измеряемую магнитную восприимчивость противоположны по знаку и их можно разделить

cv(изм) = cv(пара) - cv(диа).

При исследовании магнитных свойств одного и того же вещества в разных растворителях (табл. 3) видно, что они могут заметно зависеть от природы растворителя. Это можно объяснить вхождением молекул растворителя в первую координационную сферу и изменением соответственно электронного строения комплекса, энергий d-орбиталей (D) и других свойств сольватокомплекса. Таким образом, магнетохимия позволяет изучать и сольватацию, то есть взаимодействие растворяемого вещества с растворителем.

В растворах определение cм и meff координационных соединений позволяет, как это видно из изложенного выше теоретического материала, определить ряд структурных параметров (l, S, D), что делает магнетохимические исследования весьма ценными. Разные комплексы одного и того же иона металла могут заметно отличаться по величине эффективного магнитного момента. На примере меди(II) видно, что при комплексообразовании эффективный магнитный момент увеличивается, а когда образуется димерный комплекс - уменьшается вследствие антиферромагнитного взаимодействия неспаренных электронов ионов меди(II). Магнитные свойства комплексных соединений меди(II) приведены ниже. (При записи формул использованы сокращенные обозначения лигандов, принятые в координационной химии: acac - ацетилацетон CH3COCH3COCH3 , H4Tart - винная кислота HOOC(CHOH)2COOH.)

Несколько слов о "магнитной" воде, точнее, о водных растворах (поскольку даже в дистиллированной воде содержатся примеси, например растворенный кислород, а он парамагнитен). Эта тема, конечно, требует отдельного рассмотрения, мы затронем ее лишь в связи с магнетохимией. Если магнитное поле влияет на свойства раствора, а многочисленные экспериментальные факты (измерения плотности, вязкости, электропроводности, концентрации протонов, магнитной восприимчивости) свидетельствуют, что это так , то следует признать, что энергия взаимодействий отдельных компонентов раствора и ансамбля молекул воды достаточно высока, то есть сопоставима или превышает энергию теплового движения частиц в растворе, которое усредняет всякое воздействие на раствор. Напомним, что энергия магнитного взаимодействия одной частицы (молекулы) мала по сравнению с энергией теплового движения. Такое взаимодействие возможно, если принять, что в воде и водных растворах за счет кооперативного характера водородных связей реализуются большие льдоподобные структурные ансамбли молекул воды, которые могут упрочняться или разрушаться под воздействием растворенных веществ . Энергия образования таких "ансамблей", по-видимому, сопоставима с энергией теплового движения и под магнитным воздействием раствор может запомнить его и приобрести новые свойства, но броуновское движение или повышение температуры ликвидирует эту "память" в течение некоторого времени.

Обратите внимание, что, точно подбирая концентрации парамагнитных веществ в диамагнитном растворителе, можно создать немагнитную жидкость, то есть такую, средняя магнитная восприимчивость которой равна нулю или в которой магнитные поля распространяются точно так же, как и в вакууме. Это интересное свойство пока не нашло применения в технике.

Если разместить в магнитном поле какой-либо предмет, то его «поведение» и тип внутренних структурных изменений будет зависеть от материала, из которого предмет изготовлен. Все известные вещества можно разделить на пять основных групп: парамагнетики, ферромагнетики и антиферромагнетики, ферримагнетики и диамагнетики. В соответствии с данной классификацией различают магнитные свойства вещества. Чтобы разобраться, что же скрывается за указанными терминами, рассмотрим каждую группу более подробно.

Вещества, проявляющие свойства парамагнетизма, характеризуются магнитной проницаемостью с положительным знаком, причем вне зависимости от значения напряженности внешнего магнитного поля, в котором оказывается предмет. Наиболее известными представителями этой группы являются и газообразный кислород, металлы щелочноземельной и щелочной групп, а также железистые соли.

Высокая магнитная восприимчивость положительного знака (достигает 1 млн.) присуща ферромагнетикам. Будучи зависимой от интенсивности внешнего поля и температуры, восприимчивость варьирует в широких пределах. Важно отметить, что так как моменты элементарных частиц разных подрешеток в структуре равны, то суммарное значение момента нулевое.

Как по названию, так и по некоторым свойствам им близки ферримагнитные вещества. Их объединяет высокая зависимость восприимчивости от нагревания и значения напряженности поля, однако есть и различия. размещенных в подрешетках атомов друг другу не равны, поэтому, в отличие от предыдущей группы, общий момент отличен от нуля. Веществу присуща самопроизвольная намагниченность. Связь подрешеток антипараллельна. Наиболее известны ферриты. Магнитные свойства веществ данной группы высоки, поэтому они часто применяются в технике.

Особый интерес представляет группа антиферромагнетиков. При охлаждении подобных веществ ниже определенной температурной границы атомы и их ионы, размещенные в структуре кристаллической решетки, естественным образом изменяют свои магнитные моменты, приобретая противопараллельное ориентирование. Совершенно иной процесс имеет место при нагревании вещества - у него регистрируются магнитные свойства, характерные для группы парамагнетиков. Примерами могут служить карбонаты, оксиды и пр.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДНИЕ ВЫСШЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(ГОУ ВПО ВГУ)

Геологический факультет

Кафедра экологической геологии

Реферат

по теме: Магнитные свойства веществ

Выполнила: студентка I курса, гр. №9

Агошкова Екатерина Владимировна

Рецензент:

Доцент, кандидат наук Воронова Т.А.

Магнитные свойства веществ

Магнитная проницаемостью вещества

Классификация веществ по действию на них внешнего магнитного поля

Антиферромагнетики и ферримагнетики

Постоянные магниты

Точка Кюри

Литература

Магнитные свойства веществ

Магнетизм -- форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля.

Магнитные свойства вещества объясняются согласно гипотезе Ампера.

Гипотеза Ампера - магнитные свойства тела можно объяснить циркулирующими внутри него токами.

Внутри атомов, вследствие движения электронов по орбитам, существуют элементарные электрические токи, которые создают элементарные магнитные поля.

1. если вещество не обладает магнитными свойствами - элементарные магнитные поля несориентированы (из-за теплового движения);

2. если вещество обладает магнитными свойствами - элементарные магнитные поля одинаково направлены (сориентированы) и образуется собственное внутреннее магнитное поле вещества.

Намагниченным называется то вещество, которое создает собственное магнитное поле. Намагниченность возникает, если вещество поместить во внешнее магнитное поле.

магнетизм ампер антиферромагнетика кюри

Магнитн ая проницаемостью вещества

Влияние вещества на внешнее магнитное поле характеризуется величиной м , которая называется магнитной проницаемостью вещества .

Магнитная проницаемость -- это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

где B? -- магнитная индукция поля в веществе; B? 0 -- магнитная индукция поля в вакууме.

Классификация веществ по действию на них внешнего магнитного поля

1. Д иамагнетики [м<1]- слабомагнитные вещества, внутреннее магнитное поле направлено противоположно внешнему магнитному полю, но слабовыраженно. Вещества, которые имеют отрицательную магнитную восприимчивость, не зависящую от напряженности магнитного поля.

Отрицательная магнитная восприимчивость - это когда к телу подносится магнит, и оно при этом отталкивается, а не притягивается.

К диамагнетикам относятся, например, инертные газы, водород, фосфор, цинк, золото, азот, кремний, висмут, медь, серебро. То есть это вещества, которые находятся в сверхпроводящем состоянии или имеющие ковалентные связи.

2. П арамагнетики [м>1] - слабомагнитные вещества, внутреннее магнитное поле направлено также, как и внешнее магнитное поле. У этих веществ магнитная восприимчивость тоже не зависит от того, какая напряженность поля существует. Она при этом положительная. То есть при сближении парамагнетика с постоянно действующим магнитом, возникает сила притягивания. К ним можно отнести алюминий, платину, кислород, марганец, железо.

3. Ф ерромагнетики [м>>1] - сильномагнитные вещества, внутреннее магнитное поле в 100-1000 раз больше внешнего магнитного поля.

У этих веществ, в отличие от диамагнетиков и парамагнетиков, магнитная восприимчивость зависит от температуры и напряженности магнитного поля, причем в значительной мере.

К ним относятся кристаллы никеля и кобальта.

Антиферромагнетики и ферримагнетики

Вещества, у которых во время нагревания совершается фазовый переход данного вещества, сопровождающегося появлением парамагнитных свойств, называются антиферромагнетиками . Если температура становится, ниже какой-то определенной, эти свойства у вещества наблюдаться не будут. Примерами этих веществ будут марганец и хром.

Магнитная восприимчивость ферримагнетиков тоже зависит от температур и напряженности магнитного поля. Но отличия у них все же, есть. К этим веществам можно отнести различные оксиды.

Все вышеперечисленные магнетики можно еще разделить на 2 категории:

Магнитотвердые материалы. Это материалы с высоким значением коэрцитивной силы. Для их перемагничивания необходимо создать мощное магнитное поле. Эти материалы применяются в изготовлении постоянных магнитов.

Магнитомягкие материалы , напротив, имеют маленькую коэрцитивную силу. При слабых магнитных полях они способны войти в насыщение. На перемагничивание у них малые потери. Из-за этого эти материалы применяются для изготовления сердечников для электрических машин, которые работают на переменном токе. Это, например, трансформатор тока и напряжения, или генератор, или асинхронный двигатель.

Постоянные магнит ы

Постоянные магниты - это тела, длительное время сохраняющие намагниченность.

Постоянный магнит всегда имеет 2 магнитных полюса: северный (N) и южный (S).

Наиболее сильно магнитное поле постоянного магнита у его полюсов.

Постоянные магниты изготавливают обычно из железа, стали, чугуна и других сплавов железа (сильные магниты), а также из никеля, кобальта (слабые магниты). Магниты бывают естественные (природные) из железной руды магнитного железняка и искусственные, полученные намагничиванием железа при внесении его в магнитное поле.

Взаимодействие магнитов : одноименные полюса отталкиваются, а разноимённые полюса притягиваются.

Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой.

Магнитное поле постоянных магнитов

В чем причины намагничивания железа? Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси. При движении электронов возникает элементарные магнитные поля. При внесении куска железа во внешнее магнитное поле все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле. Так кусок железа становится магнитом.

Как выглядит магнитное поле постоянных магнитов?

Представление о виде магнитного поля можно получить с помощью железных опилок. Стоит лишь положить на магнит лист бумаги и посыпать его сверху железными опилками.

Для постоянного полосового магнита Для постоянного дугообразного магнита

Точка Кюри

Точка Кюри , или температура Кюри , -- температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества при изменении температуры, но при заданных значениях других термодинамических параметров (давлении, напряженности электрического или магнитного поля). Фазовый переход второго рода при температуре Кюри связан с изменением свойств симметрии вещества. При Т с во всех случаях фазовых переходов исчезает какой-либо тип атомной упорядоченности, например, упорядоченность электронных спинов (сегнетоэлектрики ), атомных магнитных моментов (ферромагнетики ), упорядоченность в расположении атомов разных компонент сплава по узлам кристаллической решетки (фазовые переходы в сплавах). Вблизи Т с наблюдаются резкие аномалии физических свойств, например, пьезоэлектрических, электрооптических, тепловых.

Магнитной точкой Кюри называют температуру такого фазового перехода, при котором исчезает спонтанная намагниченность доменов ферромагнетиков, и ферромагнетик переходит в парамагнитное состояние. При сравнительно низких температурах тепловое движение атомов, которое неизбежно приводит к некоторым нарушениям упорядоченного расположения магнитных моментов, незначительно. При увеличении температуры его роль возрастает и, наконец, при некоторой температуре (Т с) тепловое движение атомов способно разрушить упорядоченное расположение магнитных моментов, и ферромагнетик превращается в парамагнетик. Вблизи точки Кюри наблюдается ряд особенностей в изменении и немагнитных свойств ферромагнетиков (удельного сопротивления, удельной теплоемкости, температурного коэффициента линейного расширения).

Величина Т с зависит от прочности связи магнитных моментов друг с другом, в случае прочной связи достигает: для чистого железа Т с = 768 о С, для кобальта Т с =1131 о С, превышает 1000 о С для железо-кобальтовых сплавов. Для многих веществ Т с невелика (для никеля Т с =358 о С). По величине Т с можно оценить энергию связи магнитных моментов друг с другом. Для разрушения упорядоченного расположения магнитных моментов необходима энергия теплового движения, намного превосходящая как энергию взаимодействия диполей, так и потенциальную энергию магнитного диполя в поле.

При температуре Кюри магнитная проницаемость ферромагнетика становится примерно равной единице, выше точки Кюри изменение магнитной восприимчивости подчиняется закону Кюри-Вейса .

Для каждого ферромагнетика существует определенная температура - точка Кюри.

1. Если t вещества < t Кюри, то вещество обладает ферромагнитными свойствами.

2. Если t вещества > t Кюри, то ферромагнитные свойства (намагниченность) исчезают, и вещество становится парамагнетиком. Поэтому постоянные магниты при нагревании теряют свои магнитные свойства.

Литература

Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. -- Мн.: Нар. асвета, 2002. -- С. 291-297.

http://msk.edu.ua/

http://elhow.ru/

http://class-fizika.narod.ru/

Размещено на Allbest.ru

Подобные документы

    Магнитное поле - составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.

    презентация , добавлен 16.11.2011

    Сущность магнитного поля, его основные характеристики. Понятия и классификация магнетиков - веществ, способных намагничиваться во внешнем магнитном поле. Структура и свойства материалов. Постоянные и электрические магниты и области их применения.

    реферат , добавлен 02.12.2012

    Природа и характеристики магнитного поля. Магнитные свойства различных веществ и источники магнитного поля. Устройство электромагнитов, их классификация, применение и примеры использования. Соленоид и его применение. Расчет намагничивающего устройства.

    курсовая работа , добавлен 17.01.2011

    Процесс формирования и появления магнитного поля. Магнитные свойства веществ. Взаимодействие двух магнитов и явление электромагнитной индукции. Токи Фуко - вихревые индукционные токи, возникающие в массивных проводниках при изменении магнитного потока.

    презентация , добавлен 17.11.2010

    Понятие и действие магнитного поля, его характеристики: магнитная индукция, магнитный поток, напряжённость, магнитная проницаемость. Формулы магнитной индукции и правило "левой руки". Элементы и типы магнитных цепей, формулировка их основных законов.

    презентация , добавлен 27.05.2014

    Действие силового поля в пространстве, окружающем токи и постоянные магниты. Основные характеристики магнитного поля. Гипотеза Ампера, закон Био-Савара-Лапласа. Магнитный момент рамки с током. Явление электромагнитной индукции; гистерезис, самоиндукция.

    презентация , добавлен 28.07.2015

    Основные понятия, виды (диамагнетики, ферримагнетики, парамагнетики, антиферромагнетики) и условия проявления магнетизма. Природа ферромагнитного состояния веществ. Сущность явления магнитострикции. Описание доменных структур в тонких магнитных пленках.

    реферат , добавлен 30.08.2010

    Проявления магнитного поля, параметры, его характеризующие. Особенности ферромагнитных (магнитомягких и магнитотвердых) материалов. Законы Кирхгофа и Ома для магнитных цепей постоянного тока, принцип их расчета, их аналогия с электрическими цепями.

    контрольная работа , добавлен 10.10.2010

    Изучение явления диамагнетизма и парамагнетизма. Магнитная восприимчивость атомов химических элементов. Магнитный атомный порядок и спонтанная намагниченность у ферромагнитных минералов. Твердая, жидкая и газовая фазы. Магнитные свойства осадочных пород.

    презентация , добавлен 15.10.2013

    Понятие и основные свойства магнитного поля, изучение замкнутого контура с током в магнитном поле. Параметры и определение направления вектора и линий магнитной индукции. Биография и научная деятельность Андре Мари Ампера, открытие им силы Ампера.

© 2024 Сайт по саморазвитию. Вопрос-ответ