Вконтакте Facebook Twitter Лента RSS

Экспериментальные методы и средства исследования частиц. Методы наблюдения и регистрации элементарных частиц — Гипермаркет знаний Методы исследования заряженных частиц вы знаете





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок изучения нового материала.

Вид урока: комбинированный.

Технология: проблемно-диалогическая.

Цель урока: организовать деятельность учащихся по изучению и первичному закреплению знаний о методах регистрации заряженных частиц.

Оборудование: компьютер и мультимедиа-проектор, Презентация .

Способы регистрации заряженных частиц

Сегодня кажется почти неправдоподобным, сколько открытий в физике атомного ядра было сделано с использованием природных источников радиоактивного излучения с энергией всего лишь несколько МэВ и простейших детектирующих устройств. Открыто атомное ядро, получены его размеры, впервые наблюдалась ядерная реакция, обнаружено явление радиоактивности , открыты нейтрон и протон, предсказано существование нейтрино и т.д. Основным детектором частиц долгое время была пластинка, с нанесенным на нее слоем сернистого цинка. Частицы регистрировались глазом по производимым ими в сернистом цинке вспышкам света.

Со временем экспериментальные установки становились все сложней. Развивалась техника ускорения и детектирования частиц, ядерная электроника. Успехи в физике ядра и элементарных частиц все в большей степени определяются прогрессом в этих областях. Нобелевские премии по физике часто присуждаются за работы в области техники физического эксперимента.

Детекторы служат как для регистрации самого факта наличия частицы так и для определения её энергии и импульса, траектории движения частицы и др. характеристик. Для регистрации частиц часто используют детекторы которые максимально чувствительны к регистрации определенной частицы и не чувствуют большой фон создаваемый другими частицами.

Обычно в экспериментах по физике ядра и частиц необходимо выделять «нужные» события на гигантском фоне «ненужных» событий, может быть одно из миллиарда. Для этого используют различные комбинации счётчиков и методов регистрации.

Регистрация заряженных частиц основана на явлении ионизации или возбуждении атомов, которое они вызывают в веществе детектора. На этом основана работа таких детекторов как камера Вильсона, пузырьковая камера, искровая камера, фотоэмульсии, газовые сцинтилляционные и полупроводниковые детекторы.

1. Счётчик Гейгера

Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока - анод. Система заполнена газовой смесью. При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется. Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.

2. Камера Вильсона

Камера Вильсона – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения. Изобретена Ч. Вильсоном в 1912 г. (Нобелевская премия 1927 г.).

Принцип работы камеры Вильсона основан на конденсации пересыщенного пара и образовании видимых капель жидкости на ионах вдоль следа пролетевшей через камеру заряженной частицы. Для создания пересыщенного пара происходит быстрое адиабатическое расширение газа с помощью механического поршня. После фотографирования трека, газ в камере снова сжимается, капельки на ионах испаряются. Электрическое поле в камере служит для “очистки” камеры от ионов образовавшихся при предыдущей ионизации газа. В камере Вильсона треки заряженных частиц становятся видимыми благодаря конденсации перенасыщенного пара на ионах газа, образованных заряженной частицей. На ионах образуются капли жидкости, которые вырастают до размеров достаточных для наблюдения (10 –3 -10 –4 см) и фотографирования при хорошем освещении. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0.1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта – на положительных). Перенасыщение достигается быстрым уменьшением давления за счёт расширения рабочего объёма. Возможности камеры Вильсона значительно возрастают при помещении её в магнитное поле. По искривлённой магнитным полем траектории заряженной частицы определяют знак её заряда и импульс. С помощью камеры Вильсона в 1932 г. К. Андерсон обнаружил в космических лучах позитрон.

3. Пузырьковая камера

Пузырьковая камера – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка пузырьков пара вдоль траектории её движения. Изобретена А. Глэзером в 1952 г. (Нобелевская премия 1960 г.).

Принцип действия основан на вскипании перегретой жидкости вдоль трека заряженной частицы. Пузырьковая камера представляет собой сосуд, заполненный прозрачной перегретой жидкостью. При быстром понижении давления, вдоль трека ионизирующей частицы образуется цепочка пузырьков пара, которые освещаются внешним источником и фотографируются. После фотографирования следа давление в камере повышается, пузырьки газа схлопываются и камера снова готова к работе. В качестве рабочей жидкости в камере используется жидкий водород одновременно служащий водородной мишенью для исследования взаимодействия частиц с протонами.

Камера Вильсона и пузырьковая камера имеют огромное преимущество, которое заключается в том, что можно непосредственно наблюдать все заряженные частицы, образующиеся в каждом акте реакции. Для того, чтобы определить тип частицы и ее импульс камеры Вильсона и пузырьковые камеры помещают в магнитное поле. Пузырьковая камера имеет большую плотность вещества детектора по сравнению с камерой Вильсона и поэтому пробеги заряженных частиц полностью заключены в объёме детектора. Расшифровка фотографий с пузырьковых камер представляет отдельную трудоемкую проблему.

4. Ядерные эмульсии

Аналогично, как это происходит в обычной фотографии, заряженная частица нарушает вдоль своего пути структуру кристаллической решётки зерен галоидного серебра делая их способными к проявлению. Ядерная эмульсия является уникальным средством для регистрации редких событий. Стопки ядерных эмульсий позволяют регистрировать частицы очень больших энергий. С их помощью можно определить координаты трека заряженной частицы с точностью ~1 микрона. Ядерные эмульсии широко используются для регистрации космических частиц на шарах-зондах и космических аппаратах.
Фотоэмульсии как детекторы частиц в какой-то мере аналогичны камере Вильсона и пузырьковой камере. Впервые их применил английский физик С.Пауэлл для изучения космических лучей. Фотоэмульсия представляет собой слой желатины с диспергированными в ней зернами бромида серебра. Под действием света в зернах бромида серебра образуются центры скрытого изображения, способствующие восстановлению бромида серебра до металлического серебра при проявлении обычным фотографическим проявителем. Физический механизм образования этих центров состоит в образовании атомов металлического серебра за счет фотоэффекта. Ионизация, производимая заряженными частицами, дает такой же результат: возникает след из сенсибилизированных зерен, который после проявления можно видеть под микроскопом.

5. Сцинтиляционный детектор

Сцинтиляционный детектор использует свойство некоторых веществ светиться (сцинтилировать) при прохождении заряженной частицы. Кванты света, образующиеся в сцинтиляторе, затем регистрируются с помощью фотоумножителей.

Современные измерительные установки в физике высоких энергий представляют из себя сложные системы, включающие десятки тысяч счетчиков, сложную электронику и способны одновременно регистрировать десятки частиц, рождающихся в одном столкновении.

Элементарные частицы удается наблюдать благодаря тем следам, которые они оставляют при прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, ее энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы следов не оставляют, но они могут себя обнаружить в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, в конечном счете нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами.

Приборы, применяемые для регистрации ионизирующих частиц, подразделяются на две группы. К первой группе относятся приборы, которые регистрируют факт пролета частицы и, кроме того, позволяют в отдельных случаях судить об ее энергии. Вторую группу образуют так называемые трековые приборы, т. е. приборы, позволяющие наблюдать следы (треки) частиц в веществе.

К числу регистрирующих приборов относятся сцинтилляционный счетчик, черенковский счетчик, ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик.

1. Сцинтилляционный счетчик . Заряженная частица, пролетающая через вещество, вызывает не только ионизацию, но и возбуждение атомов. Возвращаясь в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы вызывают заметную световую вспышку (сцинтилляцию), называются фосфорами . Наиболее употребительными фосфорами являются (сернистый цинк, активированный серебром) и (йодистый натрий, активированный таллием).

Сцинтилляционный счетчик состоит из фосфора, от которого свет по специальному световоду подается к фотоумножителю. Импульсы, получающиеся на выходе фотоумножителя, подвергаются счету. Определяется также амплитуда импульсов, пропорциональная интенсивности вспышки. Это дает дополнительную информацию о регистрируемых частицах. Для этого типа счетчиков эффективность регистрации для заряженных частиц 100 %.

2. Черенковский счетчик . Принцип действия этого счетчика рассмотрен в п. 3.3.3. (с. 84). Назначение счетчиков – это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде. Кроме этого, счетчики позволяют разделять частицы по массе. Зная угол испускания излучения, можно определить скорость частицы, что при известной массе равносильно определению ее энергии. Если же масса частицы неизвестна, то она может быть определена по независимому измерению энергии частицы.

Черенковские счетчики устанавливаются на космических кораблях для исследования космического излучения.

3. Ионизационная камера представляет собой электрический конденсатор, заполненный газом, к электродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение на обкладках конденсатора подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой – не разгонялись настолько сильно, чтобы производить вторичную ионизацию. Следовательно, на обкладках собираются ионы, возникшие непосредственно под действием заряженных частиц: измеряется суммарный ионизационный ток либо регистрируется прохождение одиночных частиц. В последнем случае камера работает как счетчик.

4. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра с тонкой проволокой, натянутой по его оси. Цилиндр служит катодом, проволока – анодом. В отличие от ионизационной камеры в газоразрядном счетчике основную роль играет вторичная ионизация. Различают два типа газоразрядных счетчиков: пропорциональные счетчики и счетчики Гейгера–Мюллера. В первых – газовый разряд несамостоятельный, во вторых – самостоятельный.

В пропорциональных счетчиках выходной импульс пропорционален первичной ионизации, т. е. энергии частицы, влетевшей в счетчик. Поэтому эти счетчики не только регистрируют частицу, но и измеряют ее энергию.

Счетчик Гейгера–Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но он работает в области вольтамперной характеристики, соответствующей самостоятельному разряду, т. е. в области высоких напряжений, когда выходной импульс не зависит от первичной ионизации. Этот счетчик регистрирует частицу без измерения ее энергии. Для регистрации отдельных импульсов возникший самостоятельный разряд нужно гасить. Для этого последовательно с нитью (анодом) включается такое сопротивление, чтобы возникший в счетчике ток разряда вызывал на сопротивлении падение напряжения, достаточное для прерывания разряда.

5. Полупроводниковый счетчик . Основным элементом этого счетчика является полупроводниковый диод, который имеет очень малую толщину рабочей области (десятые доли миллиметра). Вследствие этого счетчик не может регистрировать высокоэнергетические частицы. Но он обладает высокой надежностью и может работать в магнитных полях, поскольку для полупроводников магниторезистивный эффект (зависимость сопротивления от напряженности магнитного поля) очень мал.

К числу трековых приборов относятся камера Вильсона, диффузионная камера, пузырьковая камера и ядерные фотоэмульсии.

1. Камера Вильсона . Так называют прибор, созданный английским физиком Вильсоном в 1912 г. Дорожка из ионов, проложенная летящей заряженной частицей, становится видимой в камере Вильсона, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Выполняется камера обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом, насыщенным парами воды или спирта. При резком расширении газа пар становится пересыщенным, и на траекториях частиц, пролетевших через камеру, образуются треки из тумана, которые фотографируются под разными углами. По внешнему виду треков можно судить о типе пролетевших частиц, об их количестве и их энергии. Поместив камеру в магнитное поле, можно по искривлению траекторий частиц судить о знаке их заряда.

Камера Вильсона долгое время была единственным прибором трекового типа. Однако и она не лишена недостатков, главный из которых – малое рабочее время, которое составляет примерно 1 % от времени, затрачиваемого на подготовку камеры к очередному запуску.

2. Диффузионная камера является разновидностью камеры Вильсона. Пересыщение достигается диффузией паров спирта от нагреваемой крышки к охлаждаемому дну. Возле дна возникает слой пересыщенного пара, в котором пролетающие заряженные частицы создают треки. В отличие от камеры Вильсона диффузионная камера работает непрерывно.

3. Пузырьковая камера. Этот прибор тоже является модификацией камеры Вильсона. Рабочим веществом является перегретая жидкость под высоким давлением. Резким сбросом давления жидкость переводится в неустойчивое перегретое состояние. Пролетающая частица вызывает резкое вскипание жидкости, и траектория оказывается обозначенной цепочкой пузырьков пара. Трек, как и в камере Вильсона, фотографируется.

Пузырьковая камера работает циклами. Ее размеры такие же, как и размеры камеры Вильсона. Жидкость много плотнее пара, что позволяет использовать камеру для исследования длинных цепей рождений и распадов высокоэнергетических частиц.

4. Ядерные фотоэмульсии . При использовании этого метода регистрации заряженная частица проходит в эмульсии, вызывая ионизацию атомов. После проявления эмульсии следы заряженных частиц обнаруживаются в виде цепочки зерен серебра. Эмульсия – среда более плотная, чем пар в камере Вильсона или жидкость в пузырьковой камере, поэтому протяженность трека в эмульсии более короткая. (Трек длиной в эмульсии соответствует треку длиной в камере Вильсона.) Метод фотоэмульсий применяется для изучения частиц сверхвысоких энергий, которые находятся в космических лучах либо получаются в ускорителях.

Преимущества счетчиков и трековых детекторов объединены в искровых камерах, в которых быстрота регистрации, свойственная счетчикам, сочетается с более полной информацией о частицах, получаемой в камерах. Можно сказать, что искровая камера – это набор счетчиков. Информация в искровых камерах выдается немедленно, без последующей обработки. В то же время по действию многих счетчиков можно установить треки частиц.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Приборы для регистрации заряженных частиц называются детекторами. Существует два основных вида детекторов:

1) дискретные (счетные и определяющие энергию частиц): счетчик Гейгера, ионизационная камера и др.;

2) трековые (дающие возможность наблюдать и фотографировать следы (треки) частиц в рабочем объеме детектора): камера Вильсона, пузырьковая камера, толстослойные фотоэмульсии и др.

1. Газоразрядный счетчик Гейгера. Для регистрации электронов и \(~\gamma\)-квантов (фотонов) большой энергии используется счетчик Гейгера-Мюллера. Он состоит из стеклянной трубки (рис. 22.4), к внутренним стенкам которой прилегает катод К - тонкий металлический цилиндр; анодом А служит тонкая металлическая проволока, натянутая по оси счетчика. Трубка заполняется газом, обычно аргоном. Счетчик включается в регистрирующую схему. На корпус подается отрицательный потенциал, на нить - положительный. Последовательно счетчику включается резистор R, с которого сигнал подается к регистрирующему устройству.

Действие счетчика основано на ударной ионизации. Пусть в счетчик попала частица, создавшая на своем пути хотя бы одну пару: "ион + электрон". Электроны, двигаясь к аноду (нити), попадают в поле с нарастающей напряженностью (напряжение между А и K ~ 1600 В), их скорость стремительно возрастает, и на своем пути они создают ионную лавину (возникает ударная ионизация). Попав на нить, электроны снижают ее потенциал, вследствие чего по резистору R пойдет ток. На его концах возникает импульс напряжения, который и поступает в регистрационное устройство.

На резисторе происходит падение напряжения, потенциал анода уменьшается, и напряженность поля внутри счетчика убывает, вследствие чего уменьшается кинетическая энергия электронов. Разряд прекращается. Таким образом, резистор играет роль сопротивления, автоматически гасящего лавинный разряд. Положительные ионы стекают к катоду в течение \(~t \approx 10^{-4}\) с после начала разряда.

Счетчик Гейгера позволяет регистрировать 10 4 частиц в секунду. Он применяется в основном для регистрации электронов и \(~\gamma\)-квантов. Однако непосредственно \(~\gamma\)-кванты вследствие своей малой ионизирующей способности не регистрируются. Для их обнаружения внутреннюю стенку трубки покрывают материалом, из которого \(~\gamma\)-кванты выбивают электроны. При регистрации электронов эффективность счетчика 100 %, а при регистрации \(~\gamma\)-квантов - лишь около 1 %.

Регистрация тяжелых \(~\alpha\)-частиц затруднена, так как сложно сделать в счетчике достаточно тонкое "окошко", прозрачное для этих частиц.

2. Камера Вильсона.

В камере используется способность частиц больших энергий ионизировать атомы газа. Камера Вильсона (рис. 22.5) представляет собой цилиндрический сосуд с поршнем 1. Верхняя часть цилиндра сделана из прозрачного материала, в камеру вводится небольшое количество воды или спирта, для чего снизу сосуд покрыт слоем влажного бархата или сукна 2. Внутри камеры образуется смесь насыщенных паров и воздуха. При быстром опускании поршня 1 смесь адиабатически расширяется, что сопровождается понижением ее температуры. За счет охлаждения пар становится пересыщенным.

Если воздух очищен от пылинок, то конденсация пара в жидкость затруднена из-за отсутствия центров конденсации. Однако центрами конденсации могут служить и ионы. Поэтому если через камеру (впускают через окошко 3) пролетает заряженная частица, ионизирующая на своем пути молекулы, то на цепочке ионов происходит конденсация паров и траектория движения частицы внутри камеры благодаря осевшим маленьким капелькам жидкости становится видимой. Цепочка образовавшихся капель жидкости образует трек частицы. Тепловое движение молекул быстро размывает трек частиц, и траектории частиц видны отчетливо лишь около 0,1 с, что, однако, достаточно для фотографирования.

Вид трека на фотоснимке часто позволяет судить о природе частицы и величине ее энергии. Так, \(~\alpha\)-частицы оставляют сравнительно толстый сплошной след, протоны - более тонкий, а электроны - пунктирный (рис. 22.6). Появляющееся расщепление трека - "вилки" свидетельствует о происходящей реакции.

Чтобы подготовить камеру к действию и очистить ее от оставшихся ионов, внутри нее создают электрическое поле, притягивающее ионы к электродам, где они нейтрализуются.

Советские физики П. Л. Капица и Д. В. Скобельцын предложили размещать камеру в магнитном поле, под действием которого траектории частиц искривляются в ту или иную сторону в зависимости от знака заряда. По радиусу кривизны траектории и интенсивности треков определяют энергию и массу частицы (удельный заряд).

3. Пузырьковая камера. В настоящее время в научных исследованиях используется пузырьковая камера. Рабочий объем в пузырьковой камере заполнен жидкостью под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой и в течение небольшого времени находится в неустойчивом состоянии. Если через такую жидкость пролетит заряженная частица, то вдоль ее траектории жидкость закипит, поскольку образовавшиеся в жидкости ионы служат центрами парообразования. При этом траектория частицы отмечается цепочкой пузырьков пара, т.е. делается видимой. В качестве жидкостей используются главным образом жидкий водород и пропан С 3 Н 3 . Длительность рабочего цикла порядка 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества, вследствие чего частица теряет больше энергии, чем в газе. Пробеги частиц оказываются более короткими, и частицы даже больших энергий застревают в камере. Это позволяет гораздо точнее определить направление движения частицы и ее энергию, наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

4. Метод толстослойных фотоэмульсий разработан Л. В. Мысовским и А. П. Ждановым.

Он основан на использовании почернения фотографического слоя под действием проходящих через фотоэмульсию быстрых заряженных частиц. Такая частица вызывает распад молекул бромистого серебра на ионы Ag + и Вг - и почернение фотоэмульсии вдоль траектории движения, образуя скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и образуется трек частицы. По длине и толщине трека судят об энергии и массе частицы.

Для изучения следов частиц, обладающих очень высокой энергией и дающих длинные следы, большое количество пластинок складывается в стопу.

Существенным преимуществом метода фотоэмульсий, помимо простоты применения, является то, что он дает неисчезающий след частицы, который затем может быть тщательно изучен. Это привело к широкому применению данного метода при исследовании новых элементарных частиц. Этим методом с добавлением к эмульсии соединений бора или лития могут быть изучены следы нейтронов, которые в результате реакций с ядрами бора и лития создают \(~\alpha\)-частицы, вызывающие почернение в слое ядерной эмульсии. По следам \(~\alpha\)-частиц делаются выводы о скорости и энергиях нейтронов, вызвавших появление \(~\alpha\)-частиц.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 618-621.

Экспериментальные методы и средства исследования частиц

Конкурс "Я иду на урок"

Г.Г.Емелина,
школа им. Героя России И.В.Сарычева,
г. Кораблино, Рязанская обл.

Экспериментальные методы и средства исследования частиц

Открытый урок. 9-й класс

Хотя предлагаемая тема в соответствии с программой изучается в 9-м классе, материал будет интересен и для уроков в 11-м классе. – Ред.

Образовательные цели урока: ознакомить учащихся с устройствами регистрирации элементарных частиц, раскрыть принципы их работы, научить по трекам определять и сравнивать скорость, энергию, массу, заряд элементарных частиц и их отношение.

План-конспект урока

Выполняя домашнее задание, ребята вспомнили и нашли примеры неустойчивых систем (см. рисунки) и способы выведения их из неустойчивого состояния.

Провожу фронтальный опрос:

    Как получить пересыщенный пар? (Ответ. Резко увеличить объём сосуда. При этом температура понизится и пар станет пересыщенным.

    Что произойдёт с пересыщенным паром, если в нём появится частица? (Ответ. Она явится центром конденсации, на ней образуется роса.)

    Как влияет магнитное поле на движение заряженной частицы? (Ответ. В поле скорость частицы меняется по направлению, но не по модулю.)

    Как называется сила, с которой магнитное поле действует на заряженную частицу? Куда она направлена? (Ответ. Это сила Лоренца; она направлена к центру окружности.)

При объяснении нового материала использую опорный конспект: большой плакат с ним висит у доски, копии – у каждого учащегося (они возьмут их с собой на дом, занесут в тетрадь и на следующем уроке возвратят учителю). Рассказываю о сцинтилляционном счётчике и счётчике Гейгера, стараясь сэкономить время на работу с фотографиями треков. Опираюсь на знания детей о напряжении в цепи при последовательном соединении. Примерный текст: «Простейшим средством регистрации излучений был экран, покрытый люминесцирующим веществом (от лат. lumen – свет). Это вещество светится при ударе о него заряженной частицы, если энергии этой частицы достаточно для возбуждения атомов вещества. В том месте, куда частица попадает, возникает вспышка – сцинтилляция (от лат. scintillatio – сверкание, искрение). Такие счётчики и получили название сцинтилляционные. Работа всех остальных приборов основана на ионизации атомов вещества пролетающими частицами.

    Первый прибор для регистрации частиц был изобретён Гейгером и усовершенствован Мюллером. Счётчик Гейгера–Мюллера (регистрирует и считает частицы) представляет собой заполненный инертным газом (например, аргоном) металлический цилиндр с изолированной от стенок металлической же нитью внутри. На корпус цилиндра подаётся отрицательный потенциал, а на нить – положительный, так что между ними создаётся напряжение около 1500 В, высокое, но недостаточное для ионизации газа. Пролетающая через газ заряженная частица ионизирует его атомы, между стенками и нитью возникает разряд, цепь замыкается, идёт ток, и на нагрузочном резисторе сопротивлением R создаётся падение напряжения UR = IR, которое снимается регистрирующим устройством. Так как прибор и резистор соединены последовательно (Uист = UR + Uприб), то с увеличением UR напряжение Uприб между стенками цилиндра и нитью уменьшается, и разряд быстро прекращается, а счётчик снова готов к работе.

    В 1912 г. была предложена камера Вильсона – прибор, который физики называли удивительным инструментом.

Ученик делает 2–3-минутное сообщение, подготовленное заранее и показывающее значение камеры Вильсона для изучения микромира, её недостатки и необходимость усовершенствования. Кратко знакомлю с устройством камеры, показываю её, чтобы учащиеся имели в виду при подготовке домашнего задания, что камера может быть выполнена по-разному (в учебнике – в виде цилиндра с поршнем). Примерный текст: «Камера представляет собой металлическое или пластмассовое кольцо 1, плотно закрытое сверху и снизу стеклянными пластинками 2. Пластинки крепятся к корпусу через два (верхнее и нижнее) металлических кольца 3 четырьмя болтами 4 с гайками. На боковой поверхности камеры есть патрубок для присоединения резиновой груши 5. Внутри камеры размещают радиоактивный препарат. Верхняя стеклянная пластинка имеет на внутренней поверхности прозрачный токопроводящий слой. Внутри камеры размещена металлическая кольцевая диафрагма с рядом щелей. Она прижимается гофрированной диафрагмой 6, которая является боковой стенкой рабочего пространства камеры и служит для устранения вихревых движений воздуха».

Ученик проводит инструктаж по технике безопасности, а затем – опыт, который раскрывает принцип действия камеры Вильсона и наглядно показывает, что твёрдые частицы или ионы могут быть центрами конденсации. Стеклянную колбу ополаскивают водой и укрепляют вверх дном в лапке штатива. Устанавливают подсвет. Отверстие колбы закрывают резиновой пробкой, в которую вставляют резиновую грушу. Сначала грушу медленно сжимают, а затем быстро отпускают – никаких изменений в колбе не наблюдается. Колбу открывают, к горловине подносят горящую спичку, снова закрывают и повторяют опыт. Теперь при расширении воздуха колба наполняется густым туманом.

Рассказываю принцип действия камеры Вильсона, используя результаты опыта. Ввожу понятие трек частицы. Делаем вывод, что частицы и ионы могут быть центрами конденсации. Примерный текст: «При быстром отпускании груши (процесс адиабатный, т.к. не успевает произойти теплообмен с окружающей средой) смесь расширяется и охлаждается, поэтому воздух в камере (колбе) становится перенасыщен парами воды. Но пары не конденсируются, т.к. нет центров конденсации: ни пылинок, ни ионов. После введения в колбу частиц копоти из пламени спички и ионов при нагреве перенасыщенный водяной пар конденсируется на них. То же происходит, если через камеру пролетает заряженная частица: она ионизирует на своём пути молекулы воздуха, на цепочке ионов происходит конденсация паров, и траектория движения частицы внутри камеры отмечается нитью из капелек тумана, т.е. становится видимой. С помощью камеры Вильсона можно не только увидеть движение частиц, но понять характер их взаимодействия с другими частицами».

Ещё один ученик показывает опыт с кюветой.

Самодельную кювету со стеклянным дном устанавливают на аппарате с приспособлением для горизонтального проецирования. На стекло кюветы пипеткой наносят капли воды, толкают шарик. Шарик на своём пути отрывает от капелек «осколки» и оставляет «трек». Аналогично в камере частица ионизирует газ, ионы становятся центрами конденсации и тоже «делают трек». Этот же опыт даёт наглядное представление о поведении частиц в магнитном поле. При анализе опыта заполняем пустые места на втором плакате с характеристиками движения заряженных частиц:

    Длина трека тем больше, чем больше (энергия) частицы и чем меньше (плотность среды).

    Толщина трека тем больше, чем больше (заряд) частицы и чем меньше её (скорость).

    При движении заряженной частицы в магнитном поле трек получается искривлённым, причём радиус кривизны трека тем больше, чем больше (масса) и (скорость) частицы и чем меньше её (заряд) и (модуль индукции) магнитного поля.

    Частица движется от конца трека с (большим) радиусом кривизны к концу с (меньшим) радиусом кривизны. Радиус кривизны по мере движения уменьшается, т.к. из-за сопротивления среды (уменьшается) скорость частицы.

Затем рассказываю о недостатках камеры Вильсона (главный – малый пробег частиц) и о необходимости изобретения устройства с более плотной средой – перегретой жидкостью (пузырьковая камера), фотоэмульсией. Их принцип работы тот же, и я предлагаю ребятам изучить его самостоятельно дома.

    Провожу работу с фотографиями треков на с. 242 учебника по рис. 196. Ребята работают парами. Заканчивают работу по оставшимся рисункам дома.

Подводим итоги урока. Делаем вывод, что с помощью рассмотренных методов можно непосредственно наблюдать только заряженные частицы. Нейтральные – нельзя, они не ионизируют вещество и, следовательно, не дают треков. Выставляю оценки.

Домашнее задание: § 76 (Г.Я.Мякишев, Б.Б.Буховцев. Физика-11. – М.: Просвещение, 1991), № 1163 по задачнику А.П.Рымкевича; ЛР № 6 «Изучение треков заряженных частиц по готовым фотографиям». Оформить и выучить ОК.

ОБ АВТОРЕ. Галина Геннадьевна Емелина – учитель I квалификационной категории, педагогический стаж 16 лет. Активно выступает на заседаниях районного методического объединения учителей физики; не раз давала хорошие открытые уроки для физиков района и учителей своей школы. Её любят и уважают ученики.

© 2024 Сайт по саморазвитию. Вопрос-ответ