Вконтакте Facebook Twitter Лента RSS

Дайте определение капиллярных явлений. Явления смачивания

Среди процессов, которые можно объяснить с помощью поверхностного натяжения и смачивания жидкостей, стоит особо выделить капиллярные явления. Физика - это загадочная и необыкновенная наука, без которой жизнь на Земле была бы невозможна. Давайте рассмотрим наиболее яркий пример этой важной дисциплины.

В жизненной практике такие интересные с точки зрения физики процессы, как капиллярные явления, встречаются весьма часто. Все дело в том, что в повседневной жизни нас окружает много тел, которые легко впитывают в себя жидкость. Причина этому - их пористая структура и элементарные законы физики, а результат - капиллярные явления.

Узкие трубки

Капилляр - это очень узкая трубка, в которой жидкость ведет себя особым образом. Примеров таких сосудов много в природе - капилляры кровеносной системы, пористых тел, почвы, растений и т. д.

Капиллярным явлением называется подъем или опускание жидкостей по узким трубкам. Такие процессы наблюдаются в естественных каналах человека, растений и других тел, а также в специальных узких сосудах из стекла. На картинке видно, что в сообщающихся трубках разной толщины установился разный уровень воды. Отмечено, что чем тоньше сосуд, тем выше уровень воды.

Эти явления лежат в основе впитывающих свойств полотенца, питания растений, движения чернил по стержню и многих других процессов.

Капиллярные явления в природе

Описанный выше процесс чрезвычайно важен для поддержания жизнедеятельности растений. Почва довольно рыхлая, между ее частицами существуют промежутки, которые представляют собой капиллярную сеть. По этим каналам поднимается вода, питая корневую систему растений влагой и всеми необходимыми веществами.

По этим же капиллярам жидкость активно испаряется, поэтому необходимо производить вспахивание земли, которое разрушит каналы и удержит питательные вещества. И наоборот, прижатая земля быстрее испарит влагу. Этим обусловлена важность перепашки земли для удержания подпочвенной жидкости.

В растениях капиллярная система обеспечивает подъем влаги от мелких корешков до самых верхних частей, а через листья она испаряется во внешнюю среду.

Поверхностное натяжение и смачивание

В основе вопроса о поведении жидкости в сосудах лежат такие физические процессы, как поверхностное натяжение и смачивание. Капиллярные явления, обусловленные ими, изучаются в комплексе.

Под действием силы поверхностного натяжения смачивающая жидкость в капиллярах находится выше уровня, на котором она должна находиться согласно закону сообщающихся сосудов. И наоборот, несмачивающая субстанция располагается ниже этого уровня.

Так, вода в стеклянной трубке (смачивающая жидкость) поднимается на тем большую высоту, чем тоньше сосуд. Напротив, ртуть в стеклянной пробирке (несмачивающая жидкость) опускается тем ниже, чем тоньше эта емкость. Кроме того, как указано на картинке, смачивающая жидкость образует вогнутую форму мениска, а несмачивающая - выпуклую.

Смачивание

Это явление, которое происходит на границе, где жидкость соприкасается с твердым телом (другой жидкостью, газами). Оно возникает по причине особого взаимодействия молекул на границе их контакта.

Полное смачивание означает, что капля растекается по поверхности твердого тела, а несмачивание преобразует ее в сферу. На практике чаще всего встречается та или иная степень смачивания, нежели крайние варианты.

Сила поверхностного натяжения

Поверхность капли имеет шарообразную форму и причина этому закон, действующий на жидкости, - поверхностное натяжение.

Капиллярные явления связаны с тем, что вогнутая сторона жидкости в трубке стремится выпрямиться до плоского состояния благодаря силам поверхностного натяжения. Это сопровождается тем, что наружные частицы увлекают за собой вверх тела, находящиеся под ними, и субстанция поднимается вверх по трубке. Однако жидкость в капилляре не может принимать плоскую форму поверхности, и этот процесс подъема продолжается до определенного момента равновесия. Чтобы рассчитать высоту, на которую поднимется (опустится) столб воды, нужно воспользоваться формулами, которые будут представлены ниже.

Расчет высоты подъема столба воды

Момент остановки подъема воды в узкой трубке наступает, когда сила тяжести Р тяж субстанции уравновесит силу поверхностного натяжения F. Этот момент определяет высоту подъема жидкости. Капиллярные явления обусловлены двумя разнонаправленными силами:

  • сила тяжести Р тяж заставляет жидкость опускаться вниз;
  • сила поверхностного натяжения F двигает воду вверх.

Сила поверхностного натяжения, действующая по окружности, где жидкость соприкасается со стенками трубки, равна:

где r - радиус трубки.

Сила тяжести, действующая на жидкость в трубке равна:

Р тяж = ρπr2hg,

где ρ - плотность жидкости; h - высота столба жидкости в трубке;

Итак, субстанция прекратит подниматься при условии, что Р тяж = F, а это значит, что

ρπr 2 hg = σ2πr,

отсюда высота жидкости в трубке равна:

Точно так же для несмачивающей жидкости:

h - это высота опускания субстанции в трубке. Как видно из формул, высота, на которую поднимется вода в узком сосуде (опустится) обратно пропорционально радиусу емкости и плотности жидкости. Это касается смачивающей жидкости и несмачивающей. При других условиях нужно делать поправку по форме мениска, что будет представлено в следующей главе.

Лапласовское давление

Как уже отмечалось, жидкость в узких трубках ведет себя так, что создается впечатление нарушения закона сообщающихся сосудов. Этот факт всегда сопровождает капиллярные явления. Физика объясняет это с помощью лапласовского давления, которое при смачивающей жидкости направлено вверх. Опуская очень узкую трубку в воду, наблюдаем, как жидкость втягивается на определенный уровень h. По закону сообщающихся сосудов, она должна была уравновеситься с внешним уровнем воды.

Это несоответствие объясняется направлением лапласовского давления p л:

В данном случае оно направлено вверх. Вода втягивается в трубку до уровня, где приходит уравновешивание с гидростатическим давлением p г столба воды:

а если p л =p г, то можно приравнять и две части уравнения:

Теперь высоту h легко вывести в виде формулы:

Когда смачивание полное, тогда мениск, который образует вогнутая поверхность воды, имеет форму полусферы, где Ɵ=0. В таком случае радиус сферы R будет равен внутреннему радиусу капилляра r. Отсюда получаем:

А в случае неполного смачивания, когда Ɵ≠0, радиус сферы можно вычислить по формуле:

Тогда искомая высота, имеющая поправку на угол, будет равна:

h=(2σ/pqr)cos Ɵ .

Из представленных уравнений видно, что высота h обратно пропорциональна внутреннему радиусу трубки r. Наибольшей высоты вода достигает в сосудах, имеющих диаметр человеческого волоса, которые и называются капиллярами. Как известно, смачивающая жидкость втягивается вверх, а несмачивающая - выталкивается вниз.

Можно провести эксперимент, взяв сообщающиеся сосуды, где один из них широкий, а другой - очень узкий. Налив туда воду, можно отметить разный уровень жидкости, причем в варианте со смачивающей субстанцией уровень в узкой трубке выше, а с несмачивающей - ниже.

Важность капиллярных явлений

Без капиллярных явлений существование живых организмов просто невозможно. Именно по мельчайшим сосудам человеческое тело получает кислород и питательные вещества. Корни растений - это сеть капилляров, которая вытягивает влагу из земли, донося ее до самых верхних листьев.

Простая бытовая уборка невозможна без капиллярных явлений, ведь по этому принципу ткань впитывает воду. Полотенце, чернила, фитиль в масляной лампе и множество устройств работает на этой основе. Капиллярные явления в технике играют важную роль при сушке пористых тел и других процессах.

Порой эти же явления дают нежелательные последствия, например, поры кирпича впитывают влагу. Чтобы избежать отсыревания зданий под воздействием грунтовых вод, нужно защитить фундамент с помощью гидроизолирующих материалов - битума, рубероида или толя.

Промокание одежды во время дождя, к примеру, брюк до самых колен от ходьбы по лужам также обязано капиллярным явлениям. Вокруг нас множество примеров этого природного феномена.

Эксперимент с цветами

Примеры капиллярных явлений можно найти в природе, особенно если говорить о растениях. Их стволы имеют внутри множество мелких сосудов. Можно провести эксперимент с окрашиванием цветка в какой-либо яркий цвет в результате капиллярных явлений.

Нужно взять ярко окрашенную воду и белый цветок (или лист пекинской капусты, стебель сельдерея) и поставить в стакан с этой жидкостью. Через какое-то время на листьях пекинской капусты можно наблюдать, как краска продвигается вверх. Цвет растения постепенно изменится соответственно краске, в которую он помещен. Это обусловлено движением субстанции вверх по стеблям согласно тем законам, которые были рассмотрены нами в этой статье.

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ - совокупность явлений, обусловленных действием межфазного поверхностного натяжения на границе раздела несмешивающихся сред; к К. я. обычно относят явления в жидкостях, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собств. паром. К. я.- частный случай поверхностных явлений. В отсутствие поверхность жидкости искривлена всегда. Под воздействием ограниченный объём жидкости стремится принять форму шара, т. е. занять объём с мин. поверхностью. Силы тяжести существенно меняют картину. Жидкость с относительно малой вязкостью быстро принимает форму сосуда, в к-рый налита, причём её свободная поверхность (не граничащая со стенками сосуда) в случае достаточно больших масс жидкости и большой площади свободной поверхности практически плоская. Однако по мере уменьшения массы жидкости роль поверхностного натяжения становится более существенной, чем сила тяжести. Так, напр., при дроблении жидкости в газе (или газа в жидкости) образуются капли (пузырьки) сферич. формы. Свойства систем, содержащих большое кол-во капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их формирования во многом определяются кривизной поверхности этих образований, то есть К. я. Большую роль К. я. играют и в зародышеобразовании при конденсации пара, кипении жидкостей, кристаллизации. Искривление поверхности жидкости может происходить также в результате её взаимодействия с поверхностью др. жидкости или твёрдого тела. В этом случае существенно наличие или отсутствие смачивания жидкостью этой поверхности. Если имеет место , т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с поверхностью твёрдого тела 3, чем с молекулами др. жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость поднимается по стенке сосуда и примыкающий к твёрдому телу участок поверхности жидкости будет искривлён. Гидростатич. давление, вызванное подъёмом уровня жидкости, уравновешивается капиллярным давлением - разностью давлений над и под искривлённой поверхностью, величина к-рого связана с локальной кривизной поверхности жидкости. Если сближать плоские стенки сосуда с жидкостью, то зоны искривления перекроются и образуется мениск - полностью искривлённая поверхность. В таком капилляре в условиях смачивания под вогнутым мениском давление понижено, жидкость поднимается; вес столба жидкости вые. h 0 уравновешивает капиллярное давление Dр. В условиях равновесия

Пар) при наличии искривления поверхности. Частный случай поверхностных явлений.

При отсутствии силы тяжести жидкость ограниченной массы под воздействием поверхностного натяжения стремится занять объём с минимальной поверхностью, т. е. принимает форму шара. В условиях действия силы тяжести не слишком вязкая жидкость достаточной массы принимает форму сосуда, в который налита, и её свободная поверхность при относительно большой площади (вдали от стенок сосуда) становится плоской, так как роль поверхностного натяжения менее существенна, чем силы тяжести. При взаимодействии с поверхностью другой жидкости или твёрдого тела (например, со стенками сосуда) поверхность рассматриваемой жидкости искривляется в зависимости от наличия или отсутствия смачивания. Если имеет место смачивание, т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с молекулами поверхности 3, чем с молекулами другой жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость 1 поднимается по стенке сосуда - участок жидкости, примыкающий к стенке, искривляется. Давление, вызываемое подъёмом жидкости, уравновешивается капиллярным давлением ∆р - разностью давлений над и под искривлённой поверхностью раздела. Величина капиллярного давления зависит от среднего радиуса r кривизны поверхности и определяется формулой Лапласа: ∆р = 2σ/r, где σ - поверхностное натяжение. Если граница раздела фаз плоская (r = ∞), то в условиях механического равновесия системы давления с обеих сторон границы раздела равны и ∆р = 0. В случае вогнутой поверхности жидкости (r < 0) давление в жидкости ниже, чем давление в граничащей с ней фазе и ∆р < 0; для выпуклой поверхности (r > 0) ∆р > 0.

Если стенки сосуда приблизить друг к другу, зоны искривления поверхности жидкости образуют мениск - полностью искривлённую поверхность. Образовавшаяся система называется капилляром; в нём в условиях смачивания давление под мениском понижено и жидкость в капилляре поднимается (над уровнем свободной поверхности жидкости в сосуде); вес столба жидкости высотой h уравновешивает капиллярное давление ∆р. Несмачивающая жидкость в капилляре образует выпуклый мениск, давление над которым выше, и жидкость в нём опускается ниже уровня свободной поверхности вне капилляра. Высота поднятия (опускания) жидкости в капилляре относительно свободной поверхности (где r = ∞ и ∆р = 0) определяется соотношением: h = 2σcosθ/∆pgr, где θ - краевой угол (угол между касательной к поверхности мениска и стенкой капилляра), ∆р - разность плотностей жидкости 1 в капилляре и внешней среды 2, g - ускорение свободного падения.

Искривление поверхности влияет на условия равновесия между жидкостью и её насыщенным паром: согласно Кельвина уравнению, давление паров над каплей жидкости повышается с уменьшением её радиуса, что объясняет, например, рост больших капель в облаках за счёт малых.

К характерным капиллярным явлениям относятся капиллярное впитывание, появление и распространение капиллярных волн, капиллярное передвижение жидкости, капиллярная конденсация, процессы испарения и растворения при наличии искривлённой поверхности. Капиллярное впитывание характеризуется скоростью, зависящей от капиллярного давления и вязкости жидкости. Оно играет существенную роль в водоснабжении растений, движении воды в почвах и других процессах, связанных с движением жидкостей в пористых средах. Капиллярная пропитка - один из распространённых процессов химической технологии. В системах с непараллельными стенками (или капиллярах конического сечения) кривизна менисков зависит от расположения в них граничных поверхностей жидкости, и капля смачивающей жидкости в них начинает двигаться к мениску с меньшим радиусом (рис. 2), т. е. в ту сторону, где давление ниже. Причиной капиллярного передвижения жидкости может служить и разница сил поверхностного натяжения в менисках, например при существовании градиента температуры или при адсорбции поверхностно-активных веществ, снижающих поверхностное натяжение.

Капиллярной конденсацией называют процесс конденсации пара в капиллярах и микротрещинах пористых тел, а также в промежутках между сближенными твёрдыми частицами или телами. Необходимое условие капиллярной конденсации - наличие смачивания поверхности тел (частиц) конденсирующейся жидкостью. Процессу капиллярной конденсации предшествует адсорбция молекул пара поверхностью тел и образование менисков жидкости. В условиях смачивания форма менисков вогнутая и давление р насыщенного пара над ними ниже, чем давление насыщенного пара р 0 при тех же условиях над плоской поверхностью. Т. е. капиллярная конденсация происходит при более низких, чем р 0 , давлениях.

Искривление поверхности жидкости может существенно влиять на процессы испарения, кипения, растворения, зародышеобразования при конденсации пара и кристаллизации. Так, свойства систем, содержащих большое количество капель или пузырьков газа (эмульсий, аэрозолей, пен), и их формирование во многом определяются капиллярными явлениями. Они лежат также в основе многих технологических процессов: флотации, спекания порошков, вытеснения нефти из пластов водными растворами поверхностно-активных веществ, адсорбционного разделения и очистки газовых и жидких смесей и т. п.

Впервые капиллярные явления были исследованы Леонардо да Винчи. Систематического наблюдения и описания капиллярные явления в тонких трубках и между плоскими, близко расположенными стеклянными пластинами провёл в 1709 Ф. Хоксби, демонстратор Лондонского королевского общества. Основы теории капиллярных явлений заложены в трудах Т. Юнга, П. Лапласа, а их термодинамическое рассмотрение осуществил Дж. Гиббс (1876).

Лит.: Адамсон А. Физическая химия поверхностей. М., 1979; Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М., 1986.

А. М. Емельяненко, Н.В. Чураев.

МОУ «Лицей № 43»

(естественно-технический)

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ
Рожков Дмитрий

Саранск


2013
Оглавление

Обзор литературы 3

Свойства жидкостей. Поверхностное натяжение 3

Опыт Плато 6

Явления смачивания и не смачивания. Краевой угол. 7

Капиллярные явления в природе и технике 8

Кровеносные сосуды 10

Пена на службе у человека 11

Практическая часть 11

«Изучение капиллярных свойств различных образцов пористой бумаги» 11

Выводы и заключения 13

Библиографический список 13

Обзор литературы

Капиллярные явления – это физические явления, обусловленные поверхностным натяжением на границе раздела несмешивающихся сред. К таким явлениям относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с другой жидкостью, газом или собственным паром.

Капиллярные явления охватывают различные случаи равновесия и движения поверхности жидкости под действием сил межмолекулярного взаимодействия и внешних сил (в первую очередь, силы тяжести). В простейшем случае, когда внешние силы отсутствуют или скомпенсированы, поверхность жидкости всегда искривлена. Так в условиях невесомости ограниченный объём жидкости, не соприкасающейся с другими телами, принимает под действием поверхностного натяжения форму шара. Эта форма отвечает устойчивому равновесию жидкости, поскольку шар обладает минимальной поверхностью при данном объёме и, следовательно, поверхностная энергия жидкости в этом случае минимальна. Форму шара жидкость принимает и в том случае, если она находится в другой, равной по плотности жидкости (действие силы тяжести компенсируется архимедовой выталкивающей силой).

Свойства систем, состоящих из многих мелких капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их образования во многом определяются кривизной поверхности частиц, то есть капиллярными явлениями. Не меньшую роль капиллярные явления играют и при образовании новой фазы: капелек жидкости при конденсации паров, пузырьков пара при кипении жидкостей, зародышей твердой фазы при кристаллизации.

При контакте жидкости с твердыми телами на форму её поверхности существенно влияют явления смачивания, обусловленные взаимодействием молекул жидкости и твердого тела.

Капиллярное впитывание играет существенную роль в водоснабжении растений, передвижении влаги в почвах и других пористых телах. Капиллярная пропитка различных материалов широко применяется в процессах химической технологии.

Искривление свободной поверхности жидкости под действием внешних сил обусловливает существование так называемых капиллярных волн («ряби» на поверхности жидкости). Капиллярные явления при движении жидких поверхностей раздела рассматривает физико-химическая гидродинамика.

Капиллярные явления впервые были открыты и исследованы Леонардо да Винчи, Б.Паскалем (17 в.) и Дж. Жюреном (Джурин, 18 в.) в опытах с капиллярными трубками. Теория капиллярных явлений развита в работах П. Лапласа (1806), Т. Юнга (Янг, 1805), Дж. У. Гиббса (1875) и И.С. Громеки (1879, 1886).

Свойства жидкостей. Поверхностное натяжение

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком (рис. 1).

Вследствие плотной упаковки молекул сжимаемость жидкостей, т. е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

Жидкости, как и твердые тела, изменяют свой объем при изменении температуры. Для не очень больших интервалов температур относительное изменение объема ΔV/V 0 пропорционально изменению температуры ΔT:

Коэффициент β называют температурным коэффициентом объемного расширения. Тепловое расширение воды имеет интересную и важную аномалию для жизни на Земле. При температуре ниже 4°С вода расширяется. Максимум плотности ρ в = 10 3 кг/м 3 вода имеет при температуре 4°С.

При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0°С. В более плотных слоях воды, у дна водоема, температура оказывается порядка 4 °С. Благодаря этому, может существовать жизнь в воде замерзающих водоемов.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости (рис.2)

Рис.2

Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔA внеш, пропорциональную изменению ΔS площади поверхности:
ΔA внеш = σΔS.
Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м 2) или в ньютонах на метр (1 Н/м = 1 Дж/м 2).

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия E p поверхности жидкости пропорциональна ее площади:
E p = A внеш = σS.
Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму (рис.3)
.

Рис.3
Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения.

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Так как всякая система самопроизвольно переходит в состояние, при котором ее потенциальная энергия минимальна, то жидкость должна самопроизвольно переходить в такое состояние, при котором площадь ее свободной поверхности имеет наименьшую величину. Это можно показать с помощью следующего опыта.

На проволоке, изогнутой в виде буквы П, укрепляют подвижную поперечину (рис. 4). Полученную таким образом рамку затягивают мыльной пленкой, опуская рамку в мыльный раствор. После вынимания рамки из раствора поперечина перемещается вверх, т. е. молекулярные силы действительно уменьшают площадь свободной поверхности жидкости.

Рис.4
Поскольку при одном и том же объеме наименьшая площадь поверхности имеется у шара, жидкость в состоянии невесомости принимает форму шара. По этой же причине маленькие капли жидкости имеют шарообразную форму. Форма мыльных пленок на различных каркасах всегда соответствует наименьшей площади свободной поверхности жидкости.

Опыт Плато

Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если сосуда нет, либо же принимает форму сосуда. Находясь внутри другой жидкости такой же плотности, жидкость принимает естественную, шарообразную форму.

Рис.5
Оливковое масло всплывает в воде, но тонет в спирте. Можно приготовить такую смесь воды и спирта, в которой масло будет находиться в равновесии. Введём с помощью стеклянной трубки или шприца в эту смесь немного оливкового масла: масло соберётся в одну шарообразную каплю, которая будет висеть неподвижно в жидкости. Если пропустить через центр масляного шара проволоку и вращать её, то масляный шар начинает сплющиваться, а затем, через несколько секунд, от него отделяется кольцо из маленьких шарообразных капелек масла. Этот опыт впервые произвел бельгийский физик Плато.

В гигантских масштабах такое явление можно наблюдать у нашей звезды Солнца и планет-гигантов. Вращаются эти небесные тела вокруг своей оси очень быстро. В результате такого вращения тела очень сильно сжаты у полюсов.



Рис.6

Явления смачивания и не смачивания. Краевой угол.

Смачивание и не смачивание – капиллярные явления широко распространены в природе и технике. Они важны как в повседневной жизни, так и для решения важнейших научно-технических задач. Знания по этим вопросам позволяют ответить на многие вопросы. Например, что капиллярные явления позволяют всасывать питательные элементы, влагу из почвы корневой системой растительности, что кровообращение в живых организмах основано на капиллярном явлении, что такое флотация и где она нашла применение, почему одни твердые тела хорошо смачиваются жидкостью, другие плохо и т. д.

Если опустить стеклянную палочку в ртуть и затем вынуть ее, то ртути на ней не окажется. Если же эту палочку опустить в воду, то после вытаскивания на ее конце останется капля воды. Этот опыт показывает, что молекулы ртути притягиваются друг к другу сильнее, чем к молекулам стекла, а молекулы воды притягиваются друг к другу слабее, чем к молекулам стекла.

Если молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твердого вещества, то жидкость называют смачивающей это вещество. Например, вода смачивает чистое стекло и не смачивает парафин. Если молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твердого вещества, то жидкость называют не смачивающей это вещество. Ртуть не смачивает стекло, однако она смачивает чистые медь и цинк.

Расположим горизонтально плоскую пластинку из какого-либо твердого вещества и капнем на нее исследуемую жидкость. Тогда капля расположится либо так, как показано на рис.7(а ), либо так, как показано на рис. 7(б).


а) б)

Рис.7.
В первом случае жидкость смачивает твердое вещество, а во втором - нет. Отмеченный на рис.5 угол θ называют краевым углом . Краевой угол образуется плоской поверхностью твердого тела и плоскостью, касательной к свободной поверхности жидкости, где граничат твердое тело, жидкость и газ; внутри краевого угла всегда находится жидкость. Для смачивающих жидкостей краевой угол – острый, а для не смачивающих - тупой. Чтобы действие силы тяжести не искажало краевой угол, каплю надо брать как можно меньше.

Поскольку краевой угол θ сохраняется при вертикальном положении твердой поверхности, то смачивающая жидкость у краев сосуда, в который она налита, приподнимается, а несмачивающая жидкость опускается

При полном смачивании θ = 0, cos θ = 1.

Рис.8

Капиллярные явления в природе и технике

Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести, действующая на столб жидкости в капилляре, не станет равной по модулю результирующей F н сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: F т = F н, где F т = mg = ρhπr 2 g, F н = σ2πr cos θ.

Отсюда следует:

Искривление поверхности жидкости в узких трубках приводит к кажущемуся нарушению закона сообщающихся сосудов.

Из формулы видно, что высота h тем больше, чем меньше внутренний радиус трубки r . Подъем воды имеет значительную величину в трубках, внутренний диаметр которых соизмерим с диаметром волоса (или еще меньше); поэтому такие трубки называют капиллярами (от греческого «капиллярис» - волосной, тонкий). Смачивающая жидкость в капиллярах поднимается вверх (рис.9, а), а несмачивающая - опускается вниз (рис.9, б).

Рис.9


Капиллярные явления можно наблюдать не только в трубках, но и в узких щелях. Если опустить в воду две стеклянные пластины так, чтобы между ними образовалась узкая щель, то вода между пластинами поднимется, и тем выше, чем ближе они расположены. Капиллярные явления играют большую роль в природе и технике. Множество мельчайших капилляров имеется в растениях. В деревьях по капиллярам влага из почвы поднимается до вершин деревьев, где через листья испаряется в атмосферу. В почве имеются капилляры, которые тем уже, чем плотнее почва. Вода по этим капиллярам поднимается до поверхности и быстро испаряется, а земля становится сухой. Ранняя весенняя вспашка земли разрушает капилляры, т. е. сохраняет подпочвенную влагу и увеличивает урожай.

В технике капиллярные явления имеют огромное значение, например, в процессах сушки капиллярно-пористых тел и т. п. Большое значение капиллярные явления имеют в строительном деле. Например, чтобы кирпичная стена не сырела, между фундаментом дома и стеной делают прокладку из вещества, в котором нет капилляров. В бумажной промышленности приходится учитывать капиллярность при изготовлении различных сортов бумаги. Например, при изготовлении писчей бумаги ее пропитывают специальным составом, закупоривающим капилляры. В быту капиллярные явления используют в фитилях, в промокательной бумаге, в перьях для подачи чернил и т. п.

Большинство растительных и животных тканей пронизано громадным числом капиллярных сосудов. Именно в капиллярах происходят основные процессы, связанные с дыханием и питанием организма, вся сложнейшая химия жизни тесно связана с диффузионными явлениями. Стволы деревьев, ветви и стебли растений пронизаны огромным числом капиллярных трубочек, по которым питательные вещества поднимаются до самых верхних листочков. Корневая система растений оканчивается тончайшими нитями-капиллярами. И сама почва, источник питания для корня, может быть представлена как совокупность капиллярных трубочек, по которым в зависимости от структуры и обработки быстрее или медленнее поднимается к поверхности вода с растворёнными в ней веществами. Высота подъёма жидкости в капиллярах тем больше, чем меньше его диаметр. Отсюда ясно, что для сохранения влаги надо почву перекапывать, а для осушения – утрамбовывать.

Роль поверхностных явлений в природе разнообразна. Например, поверхностная плёнка воды является для многих организмов опорой при движении. Такая форма движения встречается у мелких насекомых и паукообразных. Наиболее известны водомерки, опирающиеся на воду только конечными члениками широко расставленных лапок. Лапка, покрытая воскообразным налётом, не смачивается водой, поверхностный слой воды прогибается под давлением лапки, образуя небольшое углубление. Подобным образом перемещаются береговые пауки некоторых видов, но их лапки располагаются не параллельно поверхности воды, как у водомерок, а под прямым углом к ней.

Некоторые животные, обитающие в воде, но не имеющие жабер, подвешиваются снизу к поверхностной плёнке воды с помощью не смачивающихся щетинок, окружающих их органы дыхания. Этим приёмом «пользуются» личинки комаров (в том числе и малярийных).

Перья и пух водоплавающих птиц всегда обильно смазаны жировыми выделениями особых желёз, что объясняет их непромокаемость. Толстый слой воздуха, заключённый между перьями утки и не вытесняемый оттуда водой, не только защищает утку от потери тепла, но и чрезвычайно увеличивает запас плавучести, действуя подобно спасательному поясу.

Воскообразный налёт на листьях препятствует заливанию так называемых устьиц, которое могло бы привести к нарушению правильного дыхания растений. Наличием того же воскового налёта объясняется водонепроницаемость соломенной кровли, стога сена и т.д.

Основной потребляющий влагу орган, где постоянно нужна вода, в том числе для фотосинтеза, – это лист, расположенный далеко от корня. Кроме того, лист окружён воздухом, который часто «отнимает» у него воду, чтобы «насытиться» водяными парами. Возникает противоречие: листу вода нужна постоянно, но он её всё время теряет, а корень постоянно имеет воду в избытке, хотя не прочь от неё избавиться. Решение этой проблемы очевидно: надо перекачать избыток воды из корня в листья. Роль такого водопровода берёт на себя стебель. Он доставляет воду к листьям по специальным трубочкам – капиллярам. У покрытосеменных они самые совершенные и представляют собой длинные (в рост самого растения) полые сосуды, стенки которых выстланы целлюлозой и лигнином. Система таких проводящих сосудов называется ксилемой (от греч. ксилон – дерево , деревянный брусок ).

Если в просвете сосудов ксилемы корня сконцентрировать минеральные вещества, которые всосал корень из почвы, в ксилему из окружающих клеток корня по механизму осмоса устремляется вода.

Механизм «водокачки» состоит из двух осмотических насосов и капиллярных сил стенок сосудов.

Кровеносные сосуды

Всё тело пронизывают кровеносные сосуды. По строению они неодинаковы. Артерии – это сосуды, по которым движется кровь от сердца. Они имеют плотные упругие эластичные стенки, в состав которых входят гладкие мышцы. Сокращаясь, сердце выбрасывает в артерию кровь под большим давлением. Благодаря плотности и упругости стенки артерии выдерживают это давление и растягиваются.

Крупные артерии по мере удаления от сердца ветвятся. Самые мелкие артерии распадаются на тончайшие капилляры. Их стенки образованы одним слоем плоских клеток. Сквозь стенки капилляров вещества, растворённые в плазме крови, проходят в тканевую жидкость, а из неё попадают в клетки. Продукты жизнедеятельности клеток проникают сквозь стенки капилляров из тканевой жидкости в кровь. В организме человека примерно 150 миллиардов капилляров. Если все капилляры вытянуть в одну линию, то ею можно опоясать земной шар по экватору два с половиной раза. Кровь из капилляров собирается в вены – сосуды, по которым кровь движется к сердцу. Давление в венах невелико, стенки их тоньше стенок артерий.

Пена на службе у человека

К самой идее флотации привела не теория, а внимательное наблюдение случайного факта. В конце XIX в. американская учительница Карри Эверсон, стирая замасленные мешки, в которых хранился медный колчедан, обратила внимание на то, что крупинки колчедана всплывают с мыльной пеной. Это и послужило толчком к развитию способа флотации. Этот способ широко используется в горно-металлургической промышленности для обогащения руд, т.е. для увеличения относительного содержания в них ценных составляющих. Сущность флотации состоит в следующем. Тонко измельчённая руда загружается в чан с водой и маслянистыми веществами, которые способны обволакивать частицы полезного минерала тончайшей плёнкой, не смачиваемой водой. Смесь энергично перемешивается с воздухом, так что образуется множество мельчайших пузырьков – пена. При этом частицы полезного минерала, облачённые в тонкую маслянистую плёнку, при соприкосновении с оболочкой воздушного пузырька пристают к ней, повисают на пузырьке и выносятся с ним наверх, как на воздушном шарике. Частицы же пустой породы, не обволакиваемые маслянистым веществом, не пристают к оболочке и остаются в жидкости. В итоге частицы полезного минерала почти все оказываются в пене на поверхности жидкости. Пену снимают и направляют на дальнейшую обработку – для получения так называемого концентрата.

Техника флотации позволяет при надлежащем подборе примешиваемых жидкостей отделить требуемый полезный минерал от пустой породы любого состава.


Практическая часть

«Изучение капиллярных свойств различных образцов пористой бумаги»

Цель работы : изучить капиллярные свойства различных образцов пористой бумаги (на примере бумажных салфеток разных производителей).

Приборы и материалы : образцы бумаги, вода дистиллированная, линейка, ванночка.

Метод выполнения:


Наименование производителя





Расчетный радиус капилляра, 10 -5 м





2,25
2,3

2,25

0,6621

4

ООО «БРИЗ» г. Новороссийск

1,8
1,75

1,78

0,837

3



1,3
1,25

1,32

1,1286

2



2,5
2,1

2,26

0,6592

4

Повторил эксперимент, заменив воду молоком.

Молоко 2,5%;

В вычислениях использовал следующие табличные значения:

 – плотность молока (1,03х10 3 кг/м 3);

 – поверхностное натяжение (для молока на границе с воздухом = 46х10 -3 Н/м)


Наименование производителя

Высота поднятия жидкости, 10 -2 м

Среднее значение высоты поднятия жидкости, 10 -2 м

Расчетный радиус капилляра, 10 -3 м

Оценка качества впитывания влаги по 4-х балльной системе

ООО «Русская бумага АЛЛ Продукция» г. Брянск

1,1
1,1

1,09

0,836

4

ООО «БРИЗ» г. Новороссийск

0,8
0,55

0,64

1,424

3

ООО «Новые технологии» г. Краснодар

0,3
0,38

0,31

2,94

2

ИП Китайкин А.Б. г. Новошахтинск Ростовская обл.

0,98
1,0

0,97

0,94

4

Выводы и заключения



  1. В результате проведенной работы получена объективная оценка качества салфеток бумажных различных производителей.

  2. Наилучшие результаты показали образцы следующих производителей: ООО «Русская бумага АЛЛ Продукция» г. Брянск и ИП Китайкин А.Б. г. Новошахтинск Ростовская обл.

  3. Худшими оказались салфетки ООО «Новые технологии» г. Краснодар, изготовленные для сети магазинов «Магнит».

  4. Лучшие салфетки могут быть рекомендованы для использования в столовой лицея №43.

Библиографический список


  1. Физическая энциклопедия. http://enc-dic.com/enc_physics/Kapilljarne-javlenija-911.html

  2. Свойства жидкостей http://physics.kgsu.ru/index.php?option=com_content&view=article&id=161&Itemid=72#q3

  3. Капиллярные явления. http://seaniv2006.narod.ru/1191.html (03.12.12)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник:Николаев Владимир Сергеевич
  • Руководитель:Сулейманова Альфия Сайфулловна
Цель исследовательской работы: обосновать с точки зрения физики причину движения жидкости по капиллярам,выявить особенности капиллярных явлений.

Введение

В наш век высоких технологий все большее значение в жизни людей имеют естественные науки. Люди 21 века производят супер производительные компьютеры,смартфоны,все глубже и глубже изучают окружающий нас мир. Я думаю, что люди готовятся к новой научно технической революции, которая изменит наше будущее коренным образом. Но когда произойдут эти изменения никто не знает. Каждый человек своим трудом может приблизить этот день.

Эта научно-исследовательская работа – мой маленький вклад в развитие физики.

Данная научно-исследовательская работа посвящена актуальной на данный момент теме «Капиллярные явления». В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов (бумага, пряжа, кожа, различные строительные материалы, почва, дерево). Приходя в соприкосновение с водой или другими жидкостями, такие тела очень часто впитывают их в себя. В данном проекте показана важность капилляров в жизни живых и неживых организмов.

Цель исследовательской работы: обосновать с точки зрения физики причину движения жидкости по капиллярам, выявить особенности капиллярных явлений.

Объект исследования: свойство жидкостей, всасываясь, подниматься или опускаться по капиллярам.

Предмет исследования: капиллярные явления в живой и неживой природе.

  1. Изучить теоретический материал о свойствах жидкости.
  2. Ознакомиться с материалом о капиллярных явлениях.
  3. Провести серию экспериментов с целью выяснения причины поднятия жидкости в капиллярах.
  4. Обобщить изученный в ходе работы материал и сформулировать вывод.

Прежде чем перейти к изучению капиллярных явлений, надо ознакомиться со свойствами жидкости, которые играют немалую роль в капиллярных явлениях.

Поверхностное натяжение

Сам термин «поверхностное натяжение» подразумевает, что вещество у поверхности находится в «натянутом», то есть напряжённом состоянии, которое объясняется действием силы, называемой внутренним давлением. Она стягивает молекулы внутрь жидкости в направлении, перпендикулярном её поверхности. Так, молекулы, находящиеся во внутренних слоях вещества, испытывают в среднем одинаковое по всем направлениям притяжение со стороны окружающих молекул; молекулы же поверхностного слоя подвергаются неодинаковому притяжению со стороны внутренних слоёв веществ и со стороны, граничащей с поверхностным слоем среды. Например, на поверхности раздела жидкость – воздух молекулы жидкости, находящиеся в поверхностном слое, сильнее притягиваются со стороны соседних молекул внутренних слоёв жидкости, чем со стороны молекул воздуха. Это и является причиной различия свойств поверхностного слоя жидкости от свойств её внутренних объёмов.

Внутреннее давление обуславливает втягивание молекул, расположенных на поверхности жидкости, внутрь и тем самым стремится уменьшить поверхность до минимальной при данных условиях. Сила, действующая на единицу длины границы раздела, обуславливающая сокращение поверхности жидкости, называется силой поверхностного натяжения или просто поверхностным натяжением σ .

Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др.

При увеличении температуры поверхностное натяжение уменьшается по линейному закону. На поверхностное натяжение жидкости оказывают влияние и находящиеся в ней примеси. Вещества, ослабляющие поверхностное натяжение, называют поверхностно-активными (ПАВ). По отношению к воде ПАВ являются нефтепродукты, спирты, эфир, мыло и др. жидкие и твёрдые вещества. Некоторые вещества увеличивают поверхностное натяжение. Примеси солей и сахара, например.

Объяснение этому даёт МКТ. Если силы притяжения между молекулами самой жидкости больше сил притяжения между молекулами ПАВ и жидкости, то молекулы жидкости уходят внутрь из поверхностного слоя, а молекулы ПАВ вытесняются на поверхность. Очевидно, что молекулы соли и сахара будут втянуты в жидкость, а молекулы воды вытеснены на поверхность. Таким образом, поверхностное натяжение – основное понятие физики и химии поверхностных явлений – представляет собой одну из наиболее важных характеристик и в практическом отношении. Следует отметить, что всякое серьёзное научное исследование в области физики гетерогенных систем требует измерения поверхностного натяжения. История экспериментальных методов определения поверхностного натяжения, насчитывающая более двух столетий, прошла путь от простых и грубых способов до прецизионных методик, позволяющих находить поверхностное натяжение с точностью до сотых долей процента. Интерес к этой проблеме особенно возрос в последние десятилетия в связи с выходом человека в космос, развитием промышленного строения, где капиллярные силы в различных устройствах часто играют определяющую роль.

Один из таких методов определения поверхностного натяжения основан на поднятии смачивающей жидкости между двумя стеклянными пластинками. Их следует опустить в сосуд с водой и постепенно сближать параллельно друг другу. Вода начнёт подниматься между пластинками – её будет втягивать сила поверхностного натяжения, о которой сказано выше. Легко рассчитать коэффициент поверхностного натяжения σ можно по высоте подъёма воды у и зазору между пластинками d .

Сила поверхностного натяжения F = 2σ L , где L – длина пластинки (двойка появилась из-за того, что вода соприкасается с обеими пластинками). Эта сила удерживает слой воды массы m = ρ Ldу , где ρ – плотность воды. Таким образом, 2σ L = ρ Ldуg . Отсюда можно найти коэффициент поверхностного натяжения σ = 1/2(ρ gdу ). (1)Но интереснее сделать так: с одного конца сжать пластинки вместе, а с другого оставить небольшой зазор.


Вода поднимется и образует между пластинками удивительно правильную поверхность. Сечение этой поверхности вертикальной плоскостью – гипербола. Для доказательства достаточно в формулу (1) вместо d подставить новое выражение для зазора в данном месте. Из подобия соответствующих треугольников (см. рис. 2) d = D (x /L ). Здесь D – зазор на конце, L – по-прежнему длина пластинки, а x – расстояние от места соприкосновения пластинок до места, где определяется зазор и высота уровня. Таким образом, σ = 1/2(ρ )D (x /L ), или у = 2σ L/ρ gD(1/х ). (2)Уравнение (2) действительно является уравнением гиперболы.

Смачивание и несмачивание

Для детального изучения капиллярных явлений следует рассмотреть и некоторые молекулярные явления, обнаруживающиеся на трёхфазной границе сосуществования твёрдой, жидкой, газообразной фаз, в частности рассматривается соприкосновение жидкости с твёрдым телом. Если силы сцепления между молекулами жидкости больше, чем между молекулами твёрдого тела, то жидкость стремится уменьшить границу (площадь) своего соприкосновения с твёрдым телом, по возможности отступая от него. Капля такой жидкости на горизонтальной поверхности твёрдого тела примет форму сплюснутого шара. В этом случае жидкость называется несмачивающей твёрдое тело. Угол θ , образованный поверхностью твёрдого тела и касательной к поверхности жидкости, называется краевым. Для несмачивающей θ > 90°. В этом случае твёрдая поверхность, несмачиваемая жидкостью называется гидрофобной, или олоефильной. Если же силы сцепления между молекулами жидкости меньше, чем между молекулами жидкости и твёрдого тела, то жидкость стремится увеличить границу соприкосновения с твёрдым телом. В этом случае жидкость называется смачивающей твёрдое тело; краевой угол θ < 90°. Поверхность же будет носить название гидрофильная. Случай, когда θ = 180°, называется полным несмачиванием. Однако это практически никогда не наблюдается, так как между молекулами жидкости и твёрдого тела всегда действуют силы притяжения. При θ = 0° наблюдается полное смачивание: жидкость растекается по всей поверхности твёрдого тела. Полное смачивание или полное несмачиваение являются крайними случаями. Между ними в зависимости от соотношения молекулярных сил промежуточное положение занимают переходные случаи неполного смачивания.

Смачиваемость и несмачиваемость – понятия относительные: жидкость,смачивающая одно твёрдое тело, может не смачивать другое тело. Например,вода смачивает стекло, но не смачивает парафин; ртуть не смачивает стекло, но смачивает медь.

Смачивание обычно трактуется как результат действия сил поверхностного натяжения. Пусть поверхностное натяжение на границе воздух – жидкость σ 1,2,на границе жидкость – твёрдое тело σ 1,3, на границе воздух – твёрдое тело σ 2,3.

На единицу длины периметра смачивания действуют три силы, численно равные σ 1,2, σ 2,3, σ 1,3, направленные по касательной к соответствующим границам раздела. В случае равновесия все силы должны уравновешивать друг друга. Силы σ 2,3 и σ 1,3 действуют в плоскости поверхности твёрдого тела, сила σ 1,2 направлена к поверхности под углом θ .

Условие равновесия межфазных поверхностей имеет следующий вид: σ 2,3 = σ 1,3 + σ 1,2cosθ или cosθ =(σ 2,3 − σ1 ,3)/σ 1,2

Величину cosθ принято называть смачиванием и обозначать буквой В.

Определённое влияние на смачивание оказывает состояние поверхности. Смачиваемость резко меняется уже при наличии мономолекулярного слоя углеводородов. Последние же всегда присутствуют в атмосфере в достаточных количествах. Определённое влияние на смачивание оказывает и микрорельеф поверхности. Однако до настоящего времени пока не выявлена единая закономерность влияния шероховатости любой поверхности на смачивание её любой жидкостью. Например уравнение Венцеля-Дерягина cosθ = x cosθ0 связывает краевые углы жидкости на шероховатой (θ ) и гладкой (θ 0) поверхностях с отношением х площади истинной поверхности шероховатого тела к её проекции на плоскость. Однако на практике это уравнение не всегда соблюдается. Так, согласно этому уравнению в случае смачивания (θ<90) шераховатость должна приводить к понижению краевого угла (т.е. к большей гидрофильности), а в случае θ > 90 – к его увеличению (т.е. к большей гидрофобности). Исходя из этого и даются, как правило, сведения о влиянии шероховатости на смачивание.

По мнению многих авторов, скорость растекания жидкости на шероховатой поверхности ниже вследствие того, что жидкость при растекании испытывает задерживающее влияние встречающихся бугорков (гребней) шероховатостей. Необходимо отметить, что именно скорость изменения диаметра пятна, образованного строго дозированной каплей жидкости, нанесённой на чистую поверхность материала, используется в качестве основной характеристики смачивания в капиллярах. Её величина зависит как от поверхностных явлений, так и от вязкости жидкости, её плотности, летучести.

Очевидно, что более вязкая жидкость с прочими одинаковыми свойствами дольше растекается по поверхности и следовательно медленнее протекает по капиллярному каналу.

Капиллярные явления

Капиллярные явления, совокупность явлений, обусловленных поверхностным натяжением на границе раздела несмешивающихся сред (в системах жидкость - жидкость, жидкость - газ или пар) при наличии искривления поверхности. Частный случай поверхностных явлений.

Изучив подробно силы, лежащих в основе капиллярных явлений, стоит перейти непосредственно к капиллярам. Так, опытным путём можно пронаблюдать, что смачивающая жидкость (например, вода в стеклянной трубке) поднимается по капилляру. При этом, чем меньше радиус капилляра, тем на большую высоту поднимается в ней жидкость. Жидкость, не смачивающая стенки капилляра (например, ртуть с стеклянной трубке), опускается ниже уровня жидкости в широком сосуде. Так почему же смачивающая жидкость поднимается по капилляру, а несмачивающая опускается?

Не трудно заметить, что непосредственно у стенок сосуда поверхность жидкости несколько искривлена. Если молекулы жидкости, соприкасающиеся со стенкой сосуда, взаимодействуют с молекулами твёрдого тела сильнее, чем между собой, в этом случае жидкость стремится увеличить площадь соприкосновения с твёрдым телом (смачивающая жидкость). При этом поверхность жидкости изгибается вниз и говорят, что она смачивает стенки сосуда, в котором находится. Если же молекулы жидкости взаимодействуют между собой сильнее, чем с молекулами стенок сосуда, то жидкость стремится сократить площадь соприкосновения с твёрдым телом, её поверхность искривляется вверх. В этом случае говорят о несмачивании жидкостью стенок сосуда.

В узких трубочках, диаметр которых составляет доли миллиметра, искривлённые края жидкости охватывают весь поверхностный слой, и вся поверхность жидкости в таких трубочках имеет вид, напоминающий полусферу. Это так называемый мениск. Он может быть вогнутым, что наблюдается в случае смачивания, и выпуклым при несмачивании. Радиус кривизны поверхности жидкости при этом того же порядка, что и радиус трубки. Явления смачивания и несмачивания в данном случае также характеризуется краевым углом θ между смоченной поверхностью капиллярной трубки и мениском в точках их соприкосновения.

Под вогнутым мениском смачивающей жидкости давление меньше, чем под плоской поверхностью. Поэтому жидкость в узкой трубке (капилляре) поднимается до тех пор, пока гидростатическое давление поднятой в капилляре жидкости на уровне плоской поверхности не скомпенсирует разность давлений. Под выпуклым мениском несмачивающей жидкости давление больше, чем под плоской поверхностью, и это ведёт к опусканию несмачивающей жидкости.

Наличие сил поверхностного натяжения и кривизны поверхности жидкости в капиллярной трубочке ответственно за дополнительное давление под искривленной поверхностью, называемое давлением Лапласа: ∆p = ± 2σ /R.

Знак капиллярного давления («плюс» или «минус») зависит от знака кривизны. Центр кривизны выпуклой поверхности находится внутри соответствующей фазы. Выпуклые поверхности имеют положительную кривизну, вогнутые – отрицательную.

Так, условие равновесия жидкости в капиллярной трубочке определяется равенством


p 0 = p 0 – (2σ /R ) + ρ gh (1)

где ρ – плотность жидкости, h – высота её поднятия в трубочке, p 0 – атмосферное давление.

Из данного выражения следует, что h = 2σ /ρ gR . (2)

Преобразуем полученную формулу, выразив радиус кривизны R мениска через радиус капиллярной трубочки r .

Из рис. 6.18 следует, что r = R cosθ . Подставляя (1) в (2), получаем: h = 2σ cosθ /ρ gr .

Полученная формула, определяющая высоту поднятия жидкости в капиллярной трубочке, носит название формулы Жюрена. Очевидно, что чем меньше радиус трубки, тем на большую высоту поднимается в ней жидкость. Кроме того, высота поднятия растёт с увеличением коэффициента поверхностного натяжения жидкости.

Подъём смачивающей жидкости по капилляру можно объяснить и по-другому. Как было сказано ранее, под действием сил поверхностного натяжения поверхность жидкости стремится сократиться. Вследствие этого поверхность вогнутого мениска стремится выпрямиться и сделаться плоской. При этом она тянет за собой частицы жидкости, лежащие под ней, и жидкость поднимается по капилляру вверх. Но поверхность жидкости в узкой трубке плоской оставаться не может, она должна иметь форму вогнутого мениска. Как только в новом положении данная поверхность примет форму мениска, она снова будет стремиться сократиться и т.д. В результате действия этих причин смачивающая жидкость и поднимается по капилляру. Поднятие прекратится, когда сила тяжести Fтяж поднятого столба жидкости, которая тянет поверхность вниз, уравновесит равнодействующую силу F сил поверхностного натяжения, направленных касательно к каждой точке поверхности.

По окружности соприкосновения поверхности жидкости со стенкой капилляра действует сила поверхностного натяжения, равная произведению коэффициента поверхностного натяжения на длину окружности: 2σπ r , где r – радиус капилляра.

Сила тяжести, действующая на поднятую жидкость,

F тяж = mg = ρ Vg = ρπ r ^2hg

где ρ – плотность жидкости; h – высота столба жидкости в капилляре; g – устроение силы тяжести.

Подъём жидкости прекращается, когда F тяж = F или ρπ r ^2hg = 2σπ r . Отсюда высота поднятия жидкости в капилляре h = 2σ /ρ gR .

В случае несмачивающей жидкости последняя, стремясь сократить свою поверхность, будет опускаться вниз, выталкивая жидкость из капилляра.

Выведенная формула применима и для несмачивающей жидкости. В этом случае h – высота опускания жидкости в капилляре.

Капиллярные явления в природе

Капиллярные явления также весьма распространены в природе и часто используются в практической деятельности человека. Дерево, бумага, кожа, кирпич и очень многие другие предметы, окружающие нас, имеют капилляры. За счет капилляров вода поднимается по стеблям растений и впитывается в полотенце, когда мы им вытираемся. Поднятие воды по мельчайшим отверстиям в куске сахара, забор крови из пальца – это тоже примеры капиллярных явлений.

Кровеносная система человека, начинаясь с весьма толстых сосудов, заканчивается очень разветвленной сетью тончайших капилляров. Могут вызвать интерес, например, такие данные. Площадь поперечного сечения аорты равна 8 см 2 . Диаметр же кровеносного капилляра может быть в 50 раз меньше диаметра человеческого волоса при длине 0,5 мм. В теле взрослого человека имеется порядка 160 млрд капилляров. Их общая длина доходит до 80 тыс. км.

По многочисленным капиллярам, имеющимся в почве, вода из глубинных слоев поднимается к поверхности и интенсивно испаряется. Чтобы замедлить процесс потери влаги, капилляры разрушают путем разрыхления почвы с помощью борон, культиваторов, рыхлителей.

Практическая часть

Возьмем стеклянную трубочку с очень маленьким внутренним диаметром (d < l мм), так называемый капилляр. Опустим один из концов капилляра в сосуд с водой -вода поднимется выше уровня воды в сосуде. Поверхностное натяжение способно поднимать жидкость на сравнительно большую высоту.

Поднятие жидкости вследствие действия сил поверхностного натяжения воды можно наблюдать в простом опыте. Возьмем чистую тряпочку и опустим один ее конец в стакан с водой, а другой свесим наружу через край стакана. Вода начнет подниматься по порам ткани, аналогичным капиллярным трубкам, и пропитает всю тряпочку. Избыток воды будет капать с висящего конца (см. фото 2).


Если для опыта брать ткань светлого цвета, то на фото очень плохо видно как вода распространяется по ткани. Также следует иметь в виду, что не для всякой ткани избыток воды будет капать со свисающего конца. Я этот опыт делал дважды. Первый раз использовали светлую ткань (х/б трикотаж); вода очень хорошо стекала каплями с висящего конца. Второй раз использовали темную ткань (трикотаж из смешанных волокон – х/б и синтетика); хорошо было видно как вода распространяется по ткани, но капли со свисающего конца не капали.

Поднятие жидкости по капиллярам происходит тогда, когда силы притяжения молекул жидкости друг к другу меньше сил их притяжения к молекулам твердого тела. В этом случае говорят, что жидкость смачивает твердое тело.

Если взять не очень тонкую трубочку, набрать в нее воды и пальцем закрыть нижний конец трубки, можно увидеть, что уровень воды в трубке вогнут (рис. 9).


Это результат того, что молекулы воды сильнее притягиваются к молекулам стенок сосуда, чем друг к другу.

Не все жидкости и не во всяких трубках «цепляются» за стенки. Бывает и так, что жидкость в капилляре опускается ниже уровня в широком сосуде, при этом ее поверхность - выпуклая. Про такую жидкость говорят, что она не смачивает поверхность твердого тела. Притяжение молекул жидкости друг к другу сильнее, чем к молекулам стенок сосуда. Так ведет себя, например, ртуть в стеклянном капилляре. (Рис.10)


Заключение

Итак, в ходе этой работы я убедился в том что:

  1. Капиллярные явления играют большую роль в природе.
  2. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю результирующей силе.
  3. Смачивающая жидкость в капиллярах поднимается вверх, а несмачивающая - опускается вниз.
  4. Высота поднятия жидкости в капилляре прямо пропорциональна поверхностному натяжению её и обратно пропорциональна радиусу канала капилляра и плотности жидкости.
© 2024 Сайт по саморазвитию. Вопрос-ответ