Вконтакте Facebook Twitter Лента RSS

Физическое химическое и биологическое выветривание. Выветривание

Понятие и характеристика процесса выветривания, его основные факторы и виды. Примеры физического выветривания. Основные реакции, обуславливающие химическое выветривание. Воздействие органического мира на горные породы. Геологическая роль выветривания.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Библиотека для науки, Париж, Франсуа Мишель, Скалы и пейзажи, размышления об истории Земли. Морис Маттауэр, Что говорят камни. . Со временем ландшафты меняются. На скалы, составляющие недра, влияют различные действия. Что является основным агентом этой эрозии? Все породы реагируют на внешние стрессы одинаково?

Вода, основной эрозионный агент, действует как механически, так и химически на камнях. Он раскалывает самые нежные материалы, капая. Камни сотрясались друг от друга и изнашивались, а море, повторяя шок волн, разрывает скалы побережья, а когда оно замерзает, вода меняет свой объем. в ловушке трещин скалы, а ледники, продвигаясь под своим весом, используют камень и перемещают материалы, которые они сломали. Эти различные явления представляют собой механическое действие воды.

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Выветривание

Выветривание (weathering , degradation ) - процесс разрушения и изменения горных пород и минералов в приповерхностных условиях под воздействием физико-химических факторов атмосферы, гидросферы и биосферы. выветривание горный порода геологический

Сопротивление горных пород до воды

Но вода также имеет химическое действие, потому что дождевая вода концентрируется в углекислом газе, когда она проходит через атмосферу и способна растворять определенные минералы в горных породах. Скалы различной природы не проявляют тех же реакций на эрозию и более или менее устойчивы в зависимости от их твердости.

Гранит представляет собой твердую, сплоченную породу, что означает, что ее элементы свариваются. Он гетерогенен, потому что он образован из кристаллов разной природы. Эти кристаллы представляют собой прозрачные кварцевые, белые или розовые полевые шпаты и белые или черные слюды.

Факторами выветривания являются:

1. Колебание температур (суточное, сезонное)

2. Химические агенты: O 2 , H 2 O, CO 2

3. Органические кислоты (ульминовая, гуминовая)

4. Жизнедеятельность организмов

В зависимости от факторов, вызывающих выветривание различают несколько видов:

Таблица 1

Физическое выветривание

Физическое выветривание пород происходит без изменения их химического состава. Порода просто дробится на обломки с постепенным уменьшением их размера вплоть до песка. Примером такого физического разрушения может служить температурное выветривание.

Под действием воды, которая капает и просачивается в трещины, изменяются самые мягкие минералы в граните. Кварц не изменяется, камень теряет свою когерентность и распадается, и постепенно формируется грубый песок: гранитная арена. Гранит состоит из смеси кварца и глины, образующихся при смене слюд и полевых шпатов. Гранит затем представляет собой округлые шарики и хаос, а диаклазы заполнены гранитной ареной.

Известняк - это скала, которая встречается в виде параллельных и горизонтальных слоев, называемых стратами. По шкале образца наблюдается, что вода не пропускает воду; Это непроницаемая скала на небольших участках, а известняк всегда треснут, а дождевая вода, обогащенная атмосферным углекислым газом, проникает в трещины и растворяет породу, потому что они кислые. трещины расширяются и вызывают образование подземных полостей. Затем говорится, что известняк проницаем, и один говорит о карстовом ландшафте.

Температурное выветривание. Температурное выветривание происходит в результате резких колебаний температур, вызывающих неравномерное изменение объема горных пород и слагающих их минералов. Периодическое нагревание и охлаждение пород при суточных и сезонных колебаниях температур приводит к образованию трещин и к распадению их на глыбы, которые в свою очередь подвергаются дальнейшему измельчению. Чем резче колебания температур, тем интенсивнее проявляется физическое выветривание и наоборот, в условиях «мягкого» климата механическое разрушение пород происходиткрайне замедленно. Наиболее активно температурное выветривание проявляется в пустынях, полупустынях и высокогорных областях, где горные породы очень сильно нагреваются и расширяются днем, охлаждаются и сжимаются ночью. Интенсивность и результаты выветривания определяются также составом, структурой и цветом породы: полиминеральные породы будут разрушаться быстрее, чем мономинеральные. Этому значительно способствует анизотропия и неодинаковые коэффициенты расширения главнейших породообразующих минералов. Например, коэффициент объемного расширения кварца в два раза больше, чем у ортоклаза.

Известняки - это камни низкой твердости, полосатые ножом. Они более или менее рыхлые, то есть более или менее легко раздавливаются. Когда известняк растворяется, красная глина, содержащаяся в нем, остается на земле, и эта глина накапливается в депрессиях, называемых долин.

На природу и состав комплекса изменений влияют разные факторы. Состав исходного материала. Биоклиматические факторы. Тот же гранит не разрушается таким же образом в бореальной, умеренной или тропической зонах. Он не дает такого же комплекса изменений, если он является молодой почвой или очень старой почвой.

Глубина температурного выветривания при суточных колебаниях температур составляет не более 50 см, а при сезонных колебаниях - несколько метров.

Частными случаями температурного выветривания являются процессы десквамации (шелушения), сфероидального выветривания и дезинтеграции зерен.

Размещено на http://www.allbest.ru

Десквамация - это отделение от гладкой поверхности скал чешуек или толстых пластин параллельно поверхности породы при ее нагревании и охлаждении независимо от текстуры, структуры и состава породы (рис.1).

Оба фактора характеризуют зоны изменения в глобальном масштабе. Мы не должны забывать о стационарных условиях. Условия дренажа вариантов согласно. Которые вмешиваются более локально, чтобы изменить общую ориентацию изменения. Первыми тремя факторами являются биоклиматические процессы, связанные со временем применения к определенной родительской породе, в качестве примера используется гранит среднего состава, для которого главным фактором является гидролиз. Таким образом, вода является вектором активных элементов: между прочим, последний может только эффективно смягчать климат, когда температура превышает определенный порог.

При сфероидальном выветривании первоначально угловатые, разбитые трещинами блоки пород в результате выветривания приобретают округлую форму.

Дезинтеграция зерен - ослабление и отделение зерен грубозернистых пород в результате чего порода рассыпается, при этом образуется дресва или песок, состоящий из несвязанных между собой зерен различных минералов. Дезитеграция зерен происходит всюду, где обнажаются крупнозернистые породы.

Следовательно, так называемое химическое ухудшение происходит только в достаточно влажных и теплых климатах. Когда климат очень сухой или очень холодный, химическое изменение заменяется простым физическим распадом породы без изменения первичных материалов, сильные изменения температуры влияют главным образом на пустыни, тогда как чередование смачивания и высыхание, действие замерзания восковой воды горных пород, являются агентами дезинтеграции в холодном климате.

Поэтому в зависимости от климатического контекста происходит физическое или химическое изменение. Если других факторов, таких как природа органического вещества, не происходит, химическое изменение называется геохимическим. С другой стороны, если такие факторы происходят, химическое изменение называется биохимическим.

Другим видом физического выветривания является морозное выветривание , при котором породы разрушаются под действием замерзающей воды, проникающей в поры и трещины. При замерзании воды объем льда увеличивается на 9%, что создает значительное давление в горных породах. Таким образом легко дробятся породы с высокой пористостью, например, песчаники, а также сильно трещиноватые породы, в которых трещины распираются ледяными клиньями. Наиболее интенсивно морозное выветривание протекает в зонах, где среднегодовая температура близка к нулю. Это зона тундры, а также в горных районах на уровне снеговой линии.

Поэтому биохимическое изменение тесно связано с действием органического вещества; это изменение начинается с огромных горизонтов и прогрессирует вниз; это в основном затрагивает молодые, поэтому мелкие почвы. Это, как правило, прогрессивный и неполный, процесс трансформации является самым важным. Выделенные оксигидроксиды только кристаллизуются неполностью: это тип изменения, которое доминирует в умеренном климате.

Наоборот, геохимическое изменение не связано с органическим веществом, оно влияет на глубокие минеральные горизонты древнейших и измененных почв на большой толщине и особенно характерно для жаркого климата, что способствует быстрой эволюции органического вещества, ограниченные поверхностью оленей. Глубокие нейтральные воды, часто при повышенных температурах, вызывают общий первичный гидролиз, за ​​которым следует более или менее значительное образование глины и сильная кристаллизация высвобожденных оксигидроксидов.

Кристаллизация солей - образование и рост кристаллов в пустотах и трещинах - способствует разрушению пород, подобно действию ледяных клиньев.

Продукты физического выветривания. В результате физического выветривания на поверхности образуются угловатые обломки, которые в зависимости от своего размера подразделяются на: глыбы - (> 20 см); щебень - (20 - 1 см); дресва - (1 - 0.2 см); песок - (2 - 0.1 мм); алеврит - (0.1 - 0.01 мм); пелит - (< 0.01 мм). Скопление этих продуктов приводит к формированию рыхлых осадочных горных пород.

Эти фундаментальные процессы представляют модальности и варианты в зависимости от местных и стационарных условий. Нейтральный гидролиз. Фактически, он характеризует среду насыщенными абсорбирующими комплексами, в частности известковыми средами. Изменение всегда очень умеренное, оно относится к доминирующему типу наследования. Большинство монтмориллонитов, по сути, унаследовано от материала, среда благоприятна для их сохранения. Он характеризует молекулу кислот, растворимые комплексообразующие соединения биодеградируют или нерастворимы с поверхности.

Химическое выветривание

При химическом выветривании разрушение горных пород происходит с изменением их химического состава главным образом под воздействием кислорода, углекислого газа и воды, а также активных органических веществ содержащихся в атмосфере и гидросфере.

Главными реакциями, обуславливающими химическое выветривание, являются окисление, гидратация, растворение и гидролиз.

Только некоторые нерастворимые растворимые соединения достигают горизонта, в частности минеральные кислоты из минерализации органического вещества. Это тип изменения очень кислотных сред с низкой биологической активностью, но в присутствии органического вещества.

Хлоритизация: образование глиноземистых хлоритов путем соединения межслойных островков оксида алюминия в непрерывном листе гибрита: происходит только в очень кислой и замкнутой среде. Андозолизация: очень специфическое изменение в стекловидных или микролитических породах, этот очень быстрый износ высвобождает оксид алюминия в виде аморфных или не полностью кристаллизованных гелей, которые обездвиживают растворимые органические соединения, давая очень устойчивые комплексы гумуса и оксида алюминия.

Окисление - это переход элементов с низкой валентностью в высоковалентное за счет присоединения кислорода. Особенно быстро окислению подвергаются сульфиды, некоторые слюды и другие темноцветные минералы.

Лимонит - это самая устойчивая форма существования железа в поверхностных условиях. Все ржавые пленки и ржаво-бурая окраска пород обусловлена присутствием гидроокислов железа. Так как железо постоянно входит в химический состав многих породообразующих минералов - значит при химическом выветривании этих минералов Fe ++ перейдет в Fe +++ , т.е. лимонит. Окисляется не только Fe, но и другие металлы.

Неоформирования кристаллической глины ингибируются. Это полный гидролиз, происходящий в нейтральной среде, лишенный растворимого органического вещества, минеральные составляющие, независимо от их природы, высвобождаются: наиболее растворимыми в такой среде являются кремнезем и основания, которые удаляются более или менее полностью дренажом; оксигидраты железа и алюминия, с другой стороны, становятся нерастворимыми и накапливаются. Когда удаление диоксида кремния не завершено, новое образование глины происходит путем рекомбинации диоксида кремния и оксида алюминия.

В условиях недостатка кислорода протекает процесс восстановления , при котором металлы с высокой валентностью переходят в соединения с более низкой валентностью. Подобный процесс наиболее ярко протекает в зонах окисления сульфидных месторождений.

Размещено на http://www.allbest.ru

Выше уровня (зеркало) грунтовых вод располагается зона обогащения O 2, и в ней интенсивно протекают процессы окисления, в результате чего сульфиды металлов переходят в сульфаты, которые хорошо растворимы и просачивающимися водами перемещаются вниз до уровня грунтовых вод в зону обедненную кислородом. В этой зоне сульфаты восстанавливаются и переходят во вторичные сульфиды в результате чего возникает зона богатых руд (зона вторичного обогащения). На поверхности же рудного тела в результате окисления и выщелачивания образуется так называемая железная шляпа, которая представляет собой каркас кварца пропитанного лимонитом. Процессы окисления и восстановления можно представить в виде схемы:

Во-первых, образуются аморфные гели, которые быстро развиваются в микрокристаллическом состоянии. Окиси, оставшиеся свободными, также принимают кристаллическую форму: гетит или гематит для железа, гиббсит для алюминия. В конечном счете состав комплекса модификации зависит от количества диоксида кремния, который ускользает от удаления дренажа и участвует в неоформе глины: в этот процесс вовлечены два фактора.

Потеря диоксида кремния является прогрессивной и способной к продолжению в течение нескольких сотен тысяч лет. Энергия связи изменяется в зависимости от типа вовлеченных ионов. В магме оливин кристаллизуется при высокой температуре, поэтому он особенно неустойчив в поверхностных условиях, он является наиболее лабильным, но кварц образуется при более низкой температуре, он более стабилен. кристаллическая сеть вмешивается в устойчивость поверхностного минерала. Филлосиликаты, такие как мусковит, более устойчивы к выветриванию.

Гидратация - это химическое присоединение воды к минералам горных пород с образованием новых минералов (гидросиликатов и гидроокислов) с другими свойствами.

Fe 2 O 3 + nH2O Fe 2 O 3 nH 2 O

гематит лимонит

CaSO 4 + 2H 2 O CaSO 4 2 H 2 O

ангидрит гипс

Недавние исследования позволили оценить скорость гидролиза силикатного минерала путем измерения скорости выделения кремнезема из минерала в среде. Подвижность иона зависит от его радиуса и ионного заряда. Размер ионов определяет их кристаллическое расположение; число координации ионов по отношению к кислороду представляет собой количество ионов кислорода, которое может быть расположено вокруг рассматриваемого иона.

Кремний: координационное число 4, расположение представляет собой тетраэдр; Алюминий: координационное число 6, расположение - октаэдр. Распределение электрических зарядов на поверхности иона объясняет его поведение по отношению к воде. Они не действуют на молекулу воды и остаются рассеянными.

превращение ангидрита в гипс всегда сопровождается значительным увеличением объема породы, что приводит к механическому разрушению всей гипс-ангидритовой толщи.

Растворение - способность молекул одного вещества распространяться вследствие диффузии в другом веществе. Оно происходит с различной скоростью для разных пород и минералов. Наибольшей растворимостью обладают хлориды (галит NaCl, сильвин KCl и др.). Менее растворимы сульфаты, карбонаты.

Классификация ионов по Гольдшмидту. Именно физико-химические факторы, в частности, способствуют определению климата. Кроме того, гидроокись железа, нерастворимый гидролизат, может быть солюбилизирована ионизацией при кислотном рН. Можно видеть, что в естественных условиях состояние окисления железа зависит от рН: железосодержащее железо является стабильным при кислотном рН, трехвалентном железе при базовом рН. В воздушно-экранированной среде железо является железистым и переходит в состояние трехвалентного железа во время атмосферного выветривания.

Гидролиз - наиболее важный процесс химического выветривания, т.к. путем гидролиза разрушаются силикаты и алюмосиликаты, которые слагают половину объема внешней части континентальной коры.

Гидролиз - это обменное разложение вещества под влиянием гидролитической диссоциации воды, сопровождающееся разрушением одних и образованием других минералов. Наиболее характерен пример гидролиза полевых шпатов:

Частично выщелачивается слегка кислой дождевой водой, транспортируемой реками. Когда она поступает в морскую воду при базовом рН, ее растворимость резко уменьшается, и она выпадает в осадок. Ось ординаты указывает количество потерянного кристаллом кремния и переход в раствор. На следующих рисунках показаны поля устойчивости некоторых минералов в поверхностных условиях в зависимости от концентрации кремнезема и катиона. Такая же картина наблюдается для анортита; поле стабильности смектитового кальция более обширно; этот минерал будет более распространен в продуктах переделки.

K AlSi 3 O 8 + nH 2 O + CO 2 K 2 CO 3 + Al 4 Si 4 O 10 (OH) 8 + SiO 2 nH 2 O

ортоклаз в раствор каолинит опал

Дальнейший гидролиз каолинита приводит к его разложению и образованию латерита:

Al 4 Si 4 O 10 (OH) 8 H 2 Al 2 O 4 + SiO 2 nH 2 O Латерит

Интенсивность процесса гидролиза, которому сопутствуют растворение и гидратация, зависит от климатических условий: - в умеренном климате гидролиз протекает до стадии образования гидрослюд; - во влажном теплом климате - до стадии образования каолинита; - в субтропическом климате - до стадии образования латерита. Таким образом при гидролизе разрушаются силикаты, алюмосиликаты; на их месте накапливаются глинистые минералы, а за счет вытеснения катионов образуются свободные окислы и гидроокислы алюминия, железа, кремния, марганца.

Латериты являются ценными рудами на алюминий. При перемыве латеритной коры выветривания и переотложении гидроокислов алюминия формируются месторождения бокситов.

Стадии химического выветривания

В соответствии с приведенной последовательностью выделяются 4 стадии химического выветривания;

1. Обломочная, при которой породы превращаются в рыхлые продукты физического выветривания;

2. Обизвесткованного элювия (сиаллитная), когда начинается разложение силикатов, сопровождаемое удалением хлора, серы и обогащение пород карбонатами;

3. Глин (кислая сиаллитная стадия), когда продолжается разложение силикатов и происходит отщепление и вынос оснований (Ca, Mg, Na,K), а также образование каолиновых глин на кислых породах и нонтронитовых - на основных;

4. Латеритов (аллитная), завершающая стадия химического выветривание, на которой идет дальнейшее разложение минералов (отщепляются и выносятся окислы и гидроокислы алюминия и железа - гетит, гидрогетит и гиббсит, гидраргиллит).

Органическое выветривание

Воздействие органического мира на горные породы сводится или к физическому (механическому) разрушению их, или к химическому разложению. Важным результатом органического выветривания (в совокупности с физическим и химическим) является образование почвы, отличительным свойством которой является ее плодородие.

Размещено на http://www.allbest.ru

Элювий и кора выветривания

Элювий - это продукты выветривания, оставшиеся на месте своего образования. Все продукты выветривания, которые смещены с места образования вниз по склонам без участия линейного смыва, Ю.А. Билибин предложил назвать делювием, а коллювием Ю.А. Билибин назвал разновидность деллювия, достигшую подножия склона и прекратившую движение (рис.3).

Пример строения современного элювия можно представить в следующем виде (рис. 4).

При нормальных условиях верхние слои элювия измельчены значительно сильнее, чем лежащие ниже. С глубиной продукты выветривания становятся все более и более грубыми. Самый нижний слой состоит из кусков, хотя и отделенных от породы, но залегает на месте образования. Глубже массивные породы разбиты лишь трещинами, количество которых уменьшается с глубиной.

Элювий остается и сохраняется на уплощенных водораздельных поверхностях, а на склонах он начинает двигаться под тяжестью собственного веса и становится уже делювием.

Под корой выветривания понимается вся совокупность продуктов выветривания, залегающая на месте образования или перемещенных на небольшое расстояние и занимающие значительные площади. Нередко термин кора выветривания используют, когда выветривание прошло до стадии каолиновых глин или латеритов.

Термины «элювий» и «кора выветривания» почти синонимы. Различают современную кору выветривания и древнюю (ископаемую или погребенную), перекрытую молодыми породами.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Состав и тип коры выветривания определяется составом коренных пород, климатом и стадией выветривания: 1 - Обломочная; 2 - Гидрослюдистая; 3 - Монтмориллонитовая (нонтронитовая); 4 - Каолиновая; 5 - Латеритная.Изменение мощности и состава кор выветривания в зависимости от перечисленных факторов показано на рис 5.

Геологическая роль выветривания

1 . Выветривание - составная (основная) часть глобального процесса - денудации . И денудация и выветривание протекают селективно, т.е. избирательно. Различные горные породы и минералы в разных климатических условиях выветриваются с разной скоростью, что можно рассмотреть на примере простого строения участка земной коры (рис.6).

Рис. 6. Селективность денудации и выветривания

В условиях влажного климата известняки будут подвергаться интенсивному растворению и выщелачиванию, и на их месте будут понижения в рельефе, а в местах выхода гранитов - возвышенности.

В сухом жарком климате граниты будут разрушаться быстрее, чем известняки и на поверхности будут формироваться понижения в рельефе.

2 . выветривание - это начало формирования осадочных горных пород. На поверхности формируются различные обломочные породы: щебень, дресва, песок. Где-то накапливаются каолиновые глины, обогащенные Al; в море происходит отложение хемогенных осадков Fe и Mn, Ca, Mg, которые поверхностными и подземными водами вынесены с суши, а соли Na и K находятся в растворимом состоянии.

Таким образом, первоначально сложенные по своему составу коренные породы в процессе выветривания дифференцируются на составные части, состав которых постепенно упрощается вплоть до элементного.

3 . При выветривании образуются разнообразные полезные ископаемые: сульфидные руды, каолиновые глины, латериты, строительные материалы и др.

Размещено на Allbest.ru

...

Подобные документы

    Свойства и особенности коры выветривания, ее структура. Геологическая роль биосферы и живого вещества в земной коре. Кора выветривания и почвообразование. Элементарные процессы выветривания минералов и пород. Горные породы и их роль в почвообразовании.

    реферат , добавлен 15.01.2009

    Основные факторы выветривания - процесса разрушения и изменения горных пород и минералов в приповерхностных условиях под воздействием физико-химических факторов атмосферы, гидросферы и биосферы. Продукты физического выветривания. Строение элювия.

    презентация , добавлен 22.02.2015

    Характеристика выветривания - процесса разрушения горных пород в приповерхностных условиях под воздействием физико-химических факторов атмосферы, гидросферы и биосферы. Результат морозного выветривания. Зона окисления и восстановления сульфидных руд.

    презентация , добавлен 23.12.2014

    Морфология минералов как кристаллических и аморфных тел, шкала Мооса. Свойства минералов, используемые в макроскопической диагностике. Выветривание горных пород. Источник энергии, факторы, виды выветривания, геологический результат: кора выветривания.

    контрольная работа , добавлен 29.01.2011

    Роль подземных вод в формировании кор выветривания и их золотоносности. Геолого-геоморфологическая позиция золотоносных площадей и кор выветривания Амурской области. Золотоносность зоны гипергенеза на примере современных месторождений Амурской области.

    курсовая работа , добавлен 09.06.2015

    Определение роли, которую играют живые вещества в формировании коры выветривания - рыхлого продукта изменения горных пород, образующегося под почвой, в том числе, и за счет поступающих из нее растворов. Функции живого вещества в процессе выветривания.

    доклад , добавлен 02.10.2011

    Выветривание - физические, химические и биогенные процессы разрушения и изменения приповерхностных горных пород; образование почвы или новых продуктов. Стадии, факторы, качественное изменение химического состава пород, воздействие живых организмов.

    курсовая работа , добавлен 20.04.2011

    Изучение механизмов окислительного выветривания и торможения процесса окисления углей для борьбы с их самонагреванием, окислением и самовозгоранием при хранении после добычи. Свойства кокса как металлургического топлива, его крупность и ситовый состав.

    реферат , добавлен 22.10.2011

    Продукты выветривания пород, смываемые со склонов и накапливающиеся у их подножия. Геологическая деятельность ледников и ветра в различных климатических зонах. Типы речных террас. Береговые ступени, наблюдаемые в поперечном разрезе речной долины.

    реферат , добавлен 13.10.2013

    Процессы химического и физического преобразования минералов и горных пород в верхних частях земной коры и на ее поверхности. Гипергенез и кора выветривания, причины физического разрушения или дезинтеграции. Факторы литогенеза, осадочные горные породы.

Выветривание – это совокупность процессов физического, химического, биологического разрушения, разложения магматических, метаморфических, древних осадочных пород на поверхности земной коры или вблизи нее, формирующих исходный материал для образования осадков, осадочных пород и остаточные образования, слагающие коры выветривания.

Выветривание отражает взаимодействие двух ведущих противоположных начал – дифференциации исходных пород и интеграции полученных компонентов, составляющих основу комплекса явлений литогенеза в зоне господства низких давлений, температур при обилии воды и кислорода, в условиях поверхностной части литосферы.

В ходе выветривания происходит дезинтеграция породы, разделение ее на составные части под действием различных факторов и сил. Но выветривание это не только дробление (кластогенез), фракционирование, дифференциация исходных пород, подготовка материала к последующему осадко- и породообразованию, перевод его в состояние и формы, способные к перемещению различными способами с последующим концентрированием в бассейнах седиментации различного типа. Это и способ созидания новых геологических тел, таких как наземные и подводные коры выветривания, почвы, способ образования пород и полезных ископаемых. При этом выветривание, как способ создания новых геологических тел, включает преобразования, процессы, характерные для формирования типично осадочных пород.

Согласно традиционным представлениям остаточные, остающиеся на месте продукты выветривания, называются элювием . Этот термин использовался для обозначения рыхлых обломочных накоплений разного механического состава от глыб до глин, твердых продуктов – метасоматитов, инсоляционных образований (панцири, кирасы, калькреты, корки, горизонты). Последняя группа новообразований, порожденных выветриванием, сочетанием процессов разложения, выщелачивания (элювиирование – вымывание) и синтеза, по В. Т. Фролову называется хемоэлювием . К этой группе относятся и остаточные твердые продукты выветривания, слагающие шляпы соляных структур, железные шляпы зон окисления сульфидных месторождений. Общей характерной особенностью подобных геологических тел, сформированных в результате выветривания, является переход к породам неизменным и сохранение в той или иной степени структурных особенностей коренной породы (структурный элювий по Л. Б. Рухину). Образование продуктов выветривания происходит на фоне естественноисторической эволюции земной коры, ее структур, форм рельефа, климата, тектонического режима. Непосредственным элементом выветривания является удаление его продуктов с места разложения пород с образованием переотложенных скоплений, разнотипных по способу переноса, механизму отложения и обстановкам седиментации. Удаление продуктов выветривания с места их образования под действием сил гравитации, ветра, водных потоков, движущихся ледников называется эрозией . Содержание этого понятия разными школами литологов понимается по разному. Иногда вместо термина «эрозия» употребляется термин «денудация», означающий выветривание и снос. Денудация объединяет совокупность процессов, обуславливающих понижение и сглаживание земной поверхности в результате выветривания, эрозии, выноса и транспортировки материала, а также совместное разрушающее действие этих процессов. Вынос продуктов дезинтеграции пород, в том числе растворимых (элювиирование), является ее важным элементом, иначе из-за скопления разрушенного материала дальнейший процесс выветривания прекратится. Экзогенные геологические процессы способствуют мобилизации продуктов выветривания с последующим отложением. В этом плане выветривание – один из главных ландшафтнообразующих факторов, действие которого приводит к нивелировке (пенепленизации) земной поверхности. Самостоятельным геологическим образованием, порожденным процессом выветривания, являются почвы – верхний плодородный породный слой, формирующийся при существенном участии биоса в процессах выветривания, содержащий горизонт обогащения продуктами разложения, в основном, растительной биомассы.

Своеобразным видом выветривания является гидротермальная и фумарольная переработка вулканитов и осадочных образований в областях вулканизма. Насыщенность сульфат-ионом, обводненность пирокластических, пепловых осадков, высокая температура и кислая среда, обеспечивающая подвижность глинозема, обуславливает формирование пестроцветного и белоцветного элювия (фумарольно-сольфатарная кора выветривания по А. С. Калугину).

Выветривание имеет два аспекта. С одной стороны это раздробление материнских пород, или физическое выветривание . Но процесс разрушения породы может состоять из химического разложения с участием реакций обмена, растворения, выщелачивания, окисления, гидратации, составляющих содержание выветривания химического . Обычно эти два основных типа выветривания сочетаются в разных пропорциях, причем физическое выветривание подготавливает горные породы к химическому выветриванию.

Физическое выветривание – это дробление материнских пород, их дезинтеграция без существенного изменения состава минеральных зерен. Такое выветривание характерно для Арктики, Антарктики, горных районов, областей аридных зон – пустынь, полупустынь со скудным содержанием влаги в почве, весьма малым годовым количеством осадков при сильном солнечном нагреве, со значительным колебанием суточных и сезонных температур.

Физическое выветривание происходит, в основном, под действием изменения температуры, замерзания-оттаивания воды, действия сверлящих (роющих) животных, животных, корневой системы растений, кристаллизации содержащихся в капиллярной воде солей. Существенных изменений состава обломков при этом не происходит.

Среди факторов выветривания отметим, в первую очередь, изменение температуры – суточные, сезонные.

Горные породы являются агрегатом зерен различного состава, которые по разному реагируют на изменение температуры. Они обладают отличающимися коэффициентами объемного и линейного расширения, т.е. при нагревании на 1⁰С увеличивают свой объем или длину на разную величину. Например, у кристаллов кальцита по направлениям, параллельным оси симметрии третьего порядка и перпендикулярным к этой же оси, коэффициенты различаются существенно, составляя 25,6·10 -6 и 5,5·10 -6 соответственно. Не менее значительны различия этих коэффициентов у разных минеральных индивидов. Так у кварца он составляет 3,1·10 -4 , у – 1,7·10 -3 . При нагревании до 50⁰С размер каждого зерна кварца увеличивается на 15%. Поскольку температура в течение чуток меняется, то различия в коэффициентах объемного и линейного расширения приводят к ослаблению связей между зернами. Порода растрескивается и делится на обломки. При физическом выветривании действуют и силы кристаллизации. Вода при замерзании, превращаясь в лед, увеличивает свой объем на 9%. При этом порода как бы расклинивается по трещинам и разрушается. Отмечается также влияние тектонических напряжений. Под их воздействием пласты пород изгибаются, сминаются с образованием разрывов, трещинноватости, т.е. происходит нарушение целостности породы. Ударное действие волны, абразия , и ветра, корразия – важные факторы физического выветривания. Волны морского прибоя и течения приводят к механическому разрушению коренных пород. Ударная волна, несущая камни, песчинки, действует на породы берега, вызывая их обрушение и растворение. Подводная абразия действует на дне озер, морей, океанов, на глубинах до нескольких десятков метров в озерах, морях и до 100 и более метров в океанах. Явление абразии и корразии – механическое разрушение, шлифование, истирание поверхности породы при трении и столкновении с твердыми частицами пород, происходят не только за счет переноса частиц движением воды, но и при переносе ветром, льдом, при перемещении под действием силы тяжести. Эрозионная деятельность льда проявляется в Арктике, в Антарктике, в хонах высоких широт, в высокогорьях. Льды, сползая, истирают и дробят породы.

Составной частью физического выветривания, эрозии и денудации является действие гравитационных факторов, определяющих начальную дифференциацию обломочного материала. Более крупные обломки накапливаются на склонах, у подножий, в понижениях рельефа. Более мелкие уносятся водой, ветром иногда на сотни километров от разрушающего массива.

В зависимости от ведущего фактора, определяющего процессы разрушения пород, выделяется несколько разновидностей физического выветривания – морозное, снежное, инсоляционное (в пустынях), биологическое, ледовое. При механическом выветривании действует комплекс процессов, характерный и для химического разложения, но при резком преобладании физического разрушения горных пород. Не перемещенные продукты, в виде разновеликих обломков, остаются на месте разрушения с постепенным переходом в неизменную породу, образуя физический элювий . В. Т. Фролов называет такой элювий каменистыми развалами или каменными руинами . Мощность слоя физического элювия различна и может достигать 30-40 м.

К числу остаточных образований относятся остающиеся на месте грубообломочные продукты механического дробления пород – перлювий после вымывания или выдувания тонких частиц, мелкозема. Образование перлювия происходит при участии течений, волнений, деятельности ветра, грунтовых вод. При этом могут образоваться скопления конкреций, фаунистических остатков, тяжелых минералов. В. Т. Фролов считает их горизонтами конденсации по механизму накопления компонентов, сходному с повышением концентрации элементов при выпаривании.

Химическое выветривание

Это сложные процессы химического разложения горных пород, включающие значительную группу химических реакций, биогенных и биохимических процессов.

Основные факторы данного типа выветривания – вода, углекислота, сильные (серная, азотная), органические кислоты, кислород, сероводород, метан, аммиак, биологическая деятельность. Ведущими процессами являются растворение, выщелачивание, окисление, гидратация, вторичная карбонатизация, гидролиз и пр. происходит вынос из зоны выветривания катионов металлов, щелочей и др. элементов, оксидов, гидроксидов в форме истинных и коллоидных растворов, в виде взвесей тончайших частиц.

Биогенный фактор – важнейший агент влияние на совокупность процессов выветривания, протекающих в обстановке взаимодействия атмосферных, гидросферных и литосферных составляющих. Биомасса оказывает каталитическое воздействие, влияет на явления деградации и синтеза как источник энергии и вещества, создает благоприятную среду для деятельности бактериального микробиоса.

Большую роль при процессах химических разложения играет структура воды, определяющая ее свойства как слабого электролита, диссоциирующего на ионы Н + и ОН — . Установлено, что при температуре 20⁰С ионное произведение воды таково: К В = = 1·10 -14 , где К В – ионное произведение воды в г/ион на литрах. Степень диссоциации воды возрастает с увеличением температуры, что способствует активизации процессов разложения пород. Поскольку вода является электролитом, она растворяет почти все известные минералы.

Существенное значение при процессах химического выветривания играет величина кислотности-щелочности pH, которая показывает концентрацию водородных ионов. Величина pH – обратная логарифму концентрации водородных ионов, меняется в пределах 1-14 и фиксирует реакцию среды: от кислой, pH = 1-6, через нейтральную pH = 7 до щелочной pH = 8-14. Минимальные значения pH характерны для сильнокислых сред, максимальные – для высокощелочных.

От величины pH существенно зависит растворимость таких компонентов как SiO 2 , Al 2 O 3 , Fe(OH) 3 , Al(OH) 3 и др., образующихся, в частности, при химическом выветривании. Гидрат окиси железа растворим, а следовательно может переноситься водными растворами только в кислой среде при pH = 1-4. Нейтрализация растворов вызывает его осаждение. Гидрат окиси алюминия Al(OH) 3 растворим как в кислой, так ив щелочной среде, выпадая в осадок при pH = 6-8. Кремнезем SiO 2 растворим в резко щелочной среде, будучи малоподвижным в интервале pH от 3 до 8.

Растворимость определяет возможность переноса многих компонентов и условия их осаждения.

Для реакций, происходящих при выветривании и определяющих вынос соединений с места разложения, важен такой показатель как ионный потенциал и его связь с растворимостью. Ионный потенциал определяется отношением заряда катиона к его ионному радиусу. В соответствии с этим все ионы (по В. М. Гольдшмиту) делятся на 3 группы:

  • растворимые – Na + , Ca 2+ , Mg 2+ . Их ионный потенциал равен трем. Не подвергаются гидратации, но диполи воды притягиваются к поверхности этих катионов, образуя сольватные слои. В эту группу также входят катионы калия и цезия;
  • катионы-гидролизаты – трехвалентные алюминий и железо, четырехвалентный марганец. Их ионный потенциал больше 3-х. гидратируются по схеме Al 3+ + 3H 2 O = Al(OH) 3 + 3H + ;
  • оксианионы 2- , 3- и др., имеющие ионный потенциал 9,5 и более, и возникающие путем диссоциации в воде оснований. Мигрируют обычно в форме гидрокарбонат-иона — и гидрофосфат иона — .

Кроме показателя кислотности-щелочности важным параметром физико-химических условий среды растворения и миграции является окислительно-восстановительный потенциал Eh. Считается, что равный нулю окислительно-восстановительный потенциал (ОКВ) соответствует реакции диссоциации водорода: Н 2 = 2Н + + 2е. значение ОКВ, при котором существует двухвалентное железо, соответствует 0,44 в. Для двухвалентной меди 0,35 в. поэтому реакция сернокислой меди с самородным железом сопровождается образованием самородной меди с одновременным превращением атома железа в катион: CuSO 4 + Fe = FeSO 4 +Cu.

Особую роль в процессах химического играют продукты разрушения органического вещества, прежде всего растительных остатков. В результате образуются гуминовые кислоты. Они создают кислую реакцию среды и участвуют в химическом разложении силикатов. С катионами ряда металлов гуминовые кислоты образуют комплексные анионы – гуматы, что способствует выносу этих элементов из продуктов выветривания в форме коллоидных растворов. Кроме того, присутствие органического вещества создает восстановительную среду, а растворимость многих закисных соединений выше, чем окисных. Микроорганизмы определяют также протекание таких реакций как сульфат-редукция, продуцируют водород, переводят окисное железо в нерастворимое состояние и др.

Большое значение для химического выветривания и выноса его продуктов с места разложения материнских пород принадлежит углекислоте, образующей с некоторыми металлами хорошо растворимые комплексы. Карбонаты металлов при взаимодействии с CO 2 превращаются в бикарбонаты, что значительно повышает их растворимость.

Комплекс горных пород, возникших в верхней части земной коры под влиянием различных факторов выветривания, называется корой выветривания. Кора выветривания (КВ) формируется в основном в зоне аэрации и просачивания. По характеру и степени изменения исходных горных пород выделяется несколько геохимических типов кор выветривания, рассмотренных ниже.

Латеритное выветривание сопровождается образованием простых окислов при полном гидролизе силикатов. Такой тип выветривания характерен для влажного климата (тропики, субтропики) при глубоко зашедшем химическом разложении исходной породы. Профиль латеритной коры выветривания по гранитам (описание снизу вверх) включает такие зоны:

  • невыветрелый гранит;
  • измененный гранит, мощность 3 м;
  • горизонт структурных глин, мощность 3 м;
  • горизонт плотных, часто шлаковидных масс кирпично-красного темно-бурого до почти черного цвета. Это продукт полного гидролиза силикатов и выноса всех подвижных катионов, обогащения окислами и гидроокислами железа, алюминия. Эта зона является типоморфной для коры данного типа; слагающее ее образование называется латеритом;
  • современная коричневато-серая почва, обогащенная с большим количеством гумуса. В основании почвенного слоя – кремнисто-железистые конкреции.

В странах тропической Африки и на о. Мадагаскар мощность таких КВ 100-150 м.

В составе зоны латерита могут присутствовать горизонты, называемые кирасы . Мощность кирасы около 4 м. они соответствуют зонам цементации латеритной коры выветривания, но наблюдаются не всегда. Кирасы со временем, теряя железо, но одновременно обогащаясь алюминием, превращаются в бокситы , руду на алюминий.

В условиях умеренного влажного климата по гранитам образуется кора выветривания глинистого профиля . Профиль коры, развитой по гранитам, включает зоны:

  • невыветрелый гранит;
  • раздробленный частично измененный гранит;
  • горизонт каолинитовых или монмориллонит-каолинитовых элювиальных глин.

По основным, ультраосновным породам и вулканитам состав глинистого горизонта коры меняется на монтмориллонит-нонтронитово-охристый.

В области умеренного влажного климата (таежно-подзолистая зона) формируется относительно маломощная (0,5-1,2 м) кора выветривания, отождествляемая с почвенным покровом (Страхов, 1963). Для него характерен небольшой мощности (1-3 см) гумусовый слой, обогащенный органическим веществом, составляющий здесь верхнюю часть профиля выветривания. Ниже располагается горизонт, сложенный преимущественно тонкодисперсным кремнеземом мощностью 15-20 см, иногда больше (элювиальный по Н. М. Страхову, 1963). В основании залегает слой с железистыми стяжениями, возникшими за счет поступления железа из вышележащих горизонтов. Это подзолистые почвы, подразделяемые на типы от дерновых до подзолов, для которых характерно максимальной развитие элювиального горизонта.

Значительное влияние климата на масштабы корообразования, на минеральный состав геохимического профиля КВ наряду с температурой определяется различиями в количестве влаги и биомассы, участвующих в выветривании.

В областях аридного климата с дефицитом влаги, а также в полярных и высокогорных, заметного разложения материала материнских пород не наблюдается, так как вода – это ен только среда, но и активный компонент химических реакций при выветривании. Преобладает механическое разрушение пород – кластогенез и формируются обломочные КВ.

Различия геохимического профиля кор выветривания в существенной мере связаны с климатическим фактором, климатической зоной, и зависят от состава исходной породы. Кроме климата формирование профиля коры выветривания и ее сохранение зависят от интенсивности и характера тектонических движений. Оптимальный условия для развития кор выветривания существуют в пределах устойчивых, малоподвижных фрагментов земной коры с ослабленной тектонической активностью, со сглаженными формами рельефа (пенепленизированный рельеф). Данным условиям отвечают платформы, плиты с ландшафтами равнин, холмогорий. В горно-складчатых зонах тектонически активных областей химическое выветривание проявляется, но из-за эрозии КВ могут сохраниться лишь локально, в пределах зон разломов, проседания.

Различия в геолого-структурных особенностях исходного образования, подвергаемого выветриванию (субстрата), обуславливает формирование КВ двух морфогенетических типов – площадного и линейного (сапожников, Витовская, 1981). Площадные КВ образуют сплошной покров на площади до сотен и тысяч квадратных километров, мощностью от нескольких до 100 м. линейные КВ, развиваясь по тектонически ослабленным зонам, развиты более локально, в соответствие с простиранием зоны, проникая на глубины до 1000 м.

Подъем территории отдельных участков влечет за собой расчленение рельефа, что затрудняет формирование КВ. Воздымание может превышать скорость корообразрования и КВ подвергнется денудации, не успев сформироваться. Огромные массы грубодисперсного материала выносятся при этом в конечные водоемы стока. Например, р. Обь ежегодно выносит в океан 394 км 3 осадочного материала. Река Меконг, имеющая истоки в Гималаях, впадая в Южно-Китайское море, выносит 1 млрд. тонн. Общая масса продуктов выветривания, выносимая всеми реками в моря и океаны в виде взвесей, обломков, называется твердым стоком и составляет 18, 5 млрд. тонн/год.

Величина твердого стока зависит от скорости течения водных потоков. Для горных рек скорость течения может составлять 700 см/с, в равнинных реках от нескольких сантиметров до 100 см/с.

Подводное выветривание

Процессы выветривания происходят не только на суше, но и на дне морей и океанов. Здесь под воздействием минерализованной морской воды, ее температур, давления и газового режима идет разложение горных пород, минералов и создаются элювиальные новообразования, химические, метасоматические и биологические продукты. Данная совокупность химических, биохимических процессов, приводящих к изменению состава минеральных тел, находящихся в море как во взвешенном состоянии, так и на его дне, имеет специальное название – гальмиролиз . Гальмиролизу подвергаются не только минеральные компоненты, поступающие на морское дно с суши, но и продукты вулканических извержений.

Главные факторы подводного разложения – вода, биос, газовый режим, соленость, давление, температура, а слой придонной воды содержит взвешенные частицы и микроорганизмы. Средняя температура зоны подводного разложения более низкая, по сравнению со средней температурой континентальных областей химического выветривания. Давление возрастает по мере увеличения глубины донного осадка от 20 атмосфер на глубине 200 м, до 1000 атмосфер на глубине 10170 м, что влечет за собой рост растворимости твердых веществ и газов, а также активизацию различных химических процессов, влияет на их скорость, направление и эффективность. Заметнее всего изменения давления проявляется в реакциях с участием газов, в частности кислорода и углекислого газа, количество которых в результате понижения температуры и давления на больших глубинах увеличивается, способствуя более энергичному протеканию процессов окисления и карбонатизации. Эффективность гальмиролиза зависит также от скорости накопления осадков и жизнедеятельности организмов, прежде всего бактерий.

Быстрое накопление осадков не способствует развитию процессов подводного выветривания, так как только что осажденный материал лишается длительного контакта с придонной водой изза перекрытия его новым слоем осадочных частиц. Морская вода не успевает оказать на осадок заметного химического воздействия. Известно, что в водоемах, морских, океанических, уменьшение скорости осадконакопления отмечается по мере удаления от береговой линии. Поэтому максимально явления гальмиролиза проявлены в более глубоководных частях бассейна. В литературе (Фролов, 1984, 1995) указывается на образование при гальмиролизе подводных панцирей различного состава – известняковых, доломитовых, железо-марганцевых, фосфатных, пиритных. Мощности их по сравнению с подобными наземными образованиями несколько меньше и составляют, обычно не более 1м. условия образования, по видимому, сходны с таковыми для коры выветривания на суше.

Не исключается вертикальная миграция растворенного вещества и цементация частиц. В результате гидролиза, гидратации, окисления, восстановления, миграции, осаждения при гальмиролизе синтезируются новые минералы – глинистые, цеолиты, карбонаты, гидроксиды железа и марганца, глауконит, шамозит, фосфориты, происходит образование пород, например, фосфатных (Фролов, 1995). Что касается бактериальной микрофлоры и ее роли в подводном выветривании, то признается участие бактерий в процесах гальмиролиза в качестве катализаторов, ускоряющих химические процессы, но не меняющие их общей направленности и продуцирующие собственные продукты.

Таким образом, физико-химические условия среды определяют возникновение и ход подводного выветривания, достигающего максимального развития в условиях малых и нулевых скоростей осадконакопления в глубоководных областях и на подводных хребтах.

© 2024 Сайт по саморазвитию. Вопрос-ответ