Вконтакте Facebook Twitter Лента RSS

Разделенных кругов. Разработка урока по астрономии "определение расстояний до тел солнечной системы и размеров этих небесных тел" Определение расстояния до тел

Разработки уроков (конспекты уроков)

Среднее общее образование

Линия УМК Б. А. Воронцова-Вельяминова. Астрономия (10-11)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Цель урока

Исследовать астрономические методы определения расстояний и размеров тел в Солнечной системе.

Задачи урока

  • Проанализировать методы определения расстояний до небесных тел в Солнечной системе: по параллаксу, радиолокационный метод, метод лазерной локации; исследовать методологические основы определения размеров Земли Эратосфеном; изучить методы определения размеров небесных тел: метод триангуляции, метод углового радиуса.

Виды деятельности

    Строить логичные устные высказывания; выявлять противоречия; использовать методы измерения параметров макрообъектов (расстояний и размеров тел в Солнечной системе); выполнять логические операции – анализ, сравнение; организовывать самостоятельную познавательную деятельность; применять знания для решения задач; осуществлять рефлексию познавательной деятельности.

Ключевые понятия

    Горизонтальный параллакс, угловые размеры объекта, метод определения расстояний по параллаксам светил, радиолокационный метод, метод лазерной локации, эмпирический метод определения размеров Земли.
Название этапа Методический комментарий
1 1. Мотивация к деятельности В ходе беседы внимание акцентируется на границах применимости и значении законов Кеплера.
2 2.1 Актуализация опыта и предшествующих знаний В ходе обсуждения вопросов подчеркивается прикладное значение законов Кеплера.
3 2.2 Актуализация опыта и предшествующих знаний Учитель организует фронтальное решение задач, при этом акцентируется внимание на логике рассуждений.
4 3.1 Выявление затруднения и формулировка целей деятельности При обсуждении ответов на вопросы учитель подводит учащихся к выводу об ограниченности метода определения расстояний с использованием законов Кеплера, необходимости нахождения методов для определения размеров небесных тел. Совместно с учащимися учитель формулирует тему урока.
5 3.2 Выявление затруднения и формулировка целей деятельности С опорой на слайд-шоу в беседе с учащимися формулируется ценность владения методами определения расстояний до небесных тел и их размеров для научных и практических целей: только зная расстояния можно говорить о природе небесных тел (изображение 1), обеспечивать безопасность окружающего Землю пространства (изображение 2), проводить расчеты траекторий полетов космических аппаратов (изображения 3, 4).
6 4.1 Открытие нового знания учащимися Используя слайд-шоу, учитель организует беседу об особенностях методов определения расстояний до небесных тел и их размеров. Учащиеся подводятся к выводам о невозможности использования прямых измерений, зависимости метода от точности измерения других физических параметров небесных объектов, единстве методов для всех небесных тел Солнечной системы, включая и самое близкое. Важно спросить учащихся о самом близком объекте и подчеркнуть, что это не Луна, а Земля.
7 4.2 Открытие нового знания учащимися В беседе с опорой на слайд-шоу необходимо актуализировать знания о длине дуги центрального угла в 1°, равенстве синуса малого угла величине самого угла, взаимосвязи радианной и градусной мер угла.
8 4.3 Открытие нового знания учащимися Используя рисунки, вводится понятие «базиса», анализируется понятие параллакса.
9 4.4 Открытие нового знания учащимися Учащиеся знакомятся с методом горизонтального параллакса, подчеркивается возможность взаимной проверки точности методов определения расстояний с использованием законов Кеплера и горизонтального параллакса. Учащиеся заносят в таблицу «Методы определения расстояний в астрономии» характеристику метода горизонтального параллакса.
10 4.5 Открытие нового знания учащимися Учащиеся представляют доклады «Радиолокационный метод в астрономии», «Лазерная локация и ее использование в астрономии». В ходе представления докладов демонстрируются изображения 1 и 2 для радиолокационного метода и изображение 3 для метода лазерной локации. В ходе обсуждения подчеркивается суть данных методов и их физическая основа. Учащиеся заполняют таблицу, характеризуя методы радиолокации и лазерной локации.
11 4.6 Открытие нового знания учащимися Учащиеся, используя текст, характеризуют в соответствии с предложенным планом метод определения длины дуги меридиана. После выполнения задания учитель организует обсуждение результатов.
12 4.7 Открытие нового знания учащимися Учащиеся, используя рисунок, анализируют способ триангуляции, внося характеристики в таблицу «Методы определения расстояний и размеров тел в астрономии».
13 4.8 Открытие нового знания учащимися Учащиеся, используя рисунок, анализируют метод определения размера светила по его угловому радиусу, вносят характеристики в таблицу «Методы определения расстояний и размеров тел в астрономии».
14 5.1 Включение нового знания в систему Учитель организует фронтальное обсуждение вопросов, направленных на выявление границ применимости методов. В беседе учащиеся приходят к выводу о единстве методов определения размеров Земли и расстояний до небесных тел, достоверности методов.
15 5.2 Включение нового знания в систему Учитель сопровождает процесс анализа типовых задач, комментирует каждый этап - от записи данных до получения числового значения искомой величины и ее единицы.
16 5.3 Включение нового знания в систему Учитель сопровождает процесс выполнения учащимися заданий на применение полученных знаний.
17 6. Рефлексия деятельности В ходе обсуждения ответов на рефлексивные вопросы необходимо акцентировать внимание на значимости законов Кеплера для последующих теоретических и практических открытий.
18 7. Домашнее задание

Используя третий закон Кеплера, среднее расстояние всех планет от Солнца можно выразить через среднее расстояние Земли от Солнца. Определив его в километрах, можно найти в этих единицах все расстояния в Солнечной системе.

С 40-х годов нашего века радиотехника позволила определять расстояния до небесных тел посредством радиолокации, о которой вы знаете из курса физики. Советские и американские ученые уточнили радиолокацией расстояния до Меркурия, Венеры, Марса и Юпитера.

Классическим способом определения расстояний был и остается угломерный геометрический способ. Им определяют расстояния и до далеких звезд, к которым метод радиолокации неприменим. Геометрический способ основан на явлении параллактического смещения.

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя (рис. 36).

Рис. 36. Измерение расстояния до недоступного предмета по параллактическому смещению.

Посмотрите на вертикально поставленный карандаш сначала одним глазом, затем другим. Вы увидите, как он при этом переменил положение на фоне далеких предметов, направление на него изменилось. Чем дальше вы отодвинете карандаш, тем меньше будет параллактическое смещение. Но чем дальше отстоят друг от друга точки наблюдения, т. е. чем больше базис, тем больше параллактическое смешение при той же удаленности предмета. В нашем примере базисом было расстояние между глазами. Принцип параллактического смещения широко используется в военном деле при определении расстояния до цели посредством дальномера. В дальномере базисом является расстояние между объективами.

Для измерения расстояний до тел Солнечной системы за базис берут радиус Земли. Наблюдают положение светила, например Луны, на фоне далеких звезд одновременно из двух обсерваторий. Расстояние между обсерваториями должно быть как можно больше, а соединяющий их отрезок должен составлять угол, по возможности близкий к прямому с направлением на светило, чтобы параллактическое смещение было максимальным. Определив из двух точек А и В (рис. 37) направления на наблюдаемый объект, несложно вычислить угол р, под которым с этого объекта был бы виден отрезок, равный радиусу Земли.

Рис. 37. Горизонтальный параллакс светила.

Угол, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом .

Чем больше расстояние до светила, тем меньше угол р. Этот угол равен параллактическому смещению светила для наблюдателей, находящихся в точках Л и В, точно так же как СЛВ для наблюдателей веточках С и В (рис. 36). CAB удобно определять по равному ему ВCA а равны они, как углы при параллельных прямых (DC параллельна AB по построению).

Расстояние

где R - радиус Земли. Приняв R за единицу, можно выразить расстояние до светила в земных радиусах.

Параллакс Луны составляет 57". Все планеты и Солнце гораздо дальше, и их параллаксы составляют секунды. Параллакс Солнца, например, рс = 8,8". Параллаксу Солнца соответствует среднее расстояние Земли от Солнца, примерно равное 150 000 000 км. Это расстояние принимается за одну астрономическую единицу (1 а. е.). В астрономических единицах часто измеряют расстояния между телами Солнечной системы.

Рис. 38. Определение линейных размеров небесных светил по их угловым размерам.

При малых углах sin р = p, если угол р выражен в радианах. Если р выражен в секундах дуги, то вводится множитель

где 206265 - число секунд в одном радиане.

Знание этих соотношений упрощает вычисление расстояния по известному параллаксу:

  1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля?
  2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удаленной точке (апогее) 405 000 км. Определите величину горизонтального параллакса Луны в этих положениях.
  3. Измерьте транспортиром угол DCA (рис. 36) и угол ASC (рис. 37), линейкой - длину базисов. Вычислите по ним соответственно расстояния СА и SC и проверьте результат прямым измерением по рисункам.
  4. Измерьте на рисунке 38 транспортиром углы р и Q и определите по полученным данным отношение диаметров изображенных тел.

Опреде-ление расстояний до небесных тел чрезвычайно важно, так как, только зная расстояния, можно ставить вопрос о приро-де небесных тел, определять размеры Солнечной системы, Га-лактики и самой Вселенной. Измерить расстояния до астро-номических объектов можно только тригонометрическими ме-тодами, поскольку провести прямое измерение, естественно, невозможно.

В пределах Солнечной системы теория Коперника, уточнён-ная Кеплером, даёт возможность из наблюдений за движени-ем планет определить относительные размеры их орбит. На рисунке 7 показаны три орбиты планет: сред-няя орбита Земли (её положение на орбите отмечено бук-вой З), орбита одной из внешних планет, расположенной даль-ше от Солнца (например, Марса), орбита внутренней планеты (Венеры или Меркурия). Центральное тело — Солнце. От-меченные положения планеты (эти положения называются планетными конфигурациями) на орбите называются: для внешней планеты П — противостояние, К — квадратура; для внутренней Э — элонгация. В зависимости от того, в какой стороне неба наблюдаются планеты, их квадратура и элонга-ция называются западной (планета видна западнее Солнца) или восточной. Очевидно, что нетрудно определить из наблю-дений дуги ПК или углы ЭЗС. Их синусы равны отношени-ям радиусов соответствующих орбит. Остаётся определить расстояния ЗК и ЗЭ.

Определить расстояние до недоступного предмета можно, измерив угол, который называется параллаксом , между на-правлениями на предмет из двух точек (рис. 8). Если извест-но расстояние между точками (база), то задача сводится к про-стой геометрической. Остаётся выбрать базу и измерить углы.

Для определения расстояний в Солнечной системе базой служит радиус Земли — величина достаточно хорошо опреде-лённая. Угол, под которым он виден с планеты или другого тела, входящего в Солнечную систему, называется горизон-тальным параллаксом. Расстояния определяются для тех пла-нет, которые наиболее близко подходят к Земле. Это Венера и малая планета Эрос. Материал с сайта

Наблюдатели, расположенные в разных местах Земли, видят проходящую по диску Солнца планету по-разному (рис. 9, I). Соответственно различаются и пути кружка по проекции Солнца (рис. 9, II), расстояние между путями сильно преувеличено, в действительности оно составляет на экране только около 2 мм. Поскольку из наблюдений за движением Венеры известны относительные размеры их орбит и орбиты Земли и скорость движения Ве-неры, то достаточно определить момент вступ-ления Венеры на диск Солнца (момент прохож-дения точки A или B на рисунке 9, II) и момент схода с не-го (момент прохождения точки A или B" на рисунке 9, II). С этими данными нетрудно вычислить расстояние между Землёй и Венерой и расстояние до Солнца.

И покидает поле брани,
И отступает "Аполлон".
Стартуют рыцари иные
К сетям сатурновых колец,
Туда, где жжёт дыханье Ио
И ощущается конец
Той Удивительной Системы
Владений Царственной Звезды,
Которой уроженцы все мы.
И. Галкин

Урок 5/11

Тема: Определение расстояний до тел СС и размеров этих небесных тел.

Цель: Рассмотреть различные способы определения расстояния до тел СС. Дать понятие горизонтального параллакса и закрепить способ нахождения расстояния и размеров тел через горизонтальный параллакс.

Задачи :
1. Обучающая : Ввести понятия геометрического (параллактического), «радиолокационного» и «лазерного» методов определения расстояний до тел Солнечной системы. Вывести формулу для определения радиуса небесных тел Солнечной системы (понятия: линейный радиус, угловой радиус). Использовать решение задач для продолжения формирования расчетных навыков.
2. Воспитывающая : раскрыв тему урока что современная наука располагает различными методами определения расстояний до небесных тел и их размеров для получения достоверные сведения о масштабах Солнечной системы и размерах входящих в нее небесных тел, содействовать формированию мировоззренческой идеи о познаваемости мира.
3. Развивающая : показать, что на первый взгляд неразрешимая проблема определения расстояний до небесных тел и радиусов небесных тел в настоящее время решается различными методами.

Знать:
I-й уровень (стандарт) - способы определения расстояний до тел СС, понятие базиса и параллакса, способ определения размера Земли и любого небесного тела.
II-й уровень - способы определения расстояний до тел СС, понятие базиса и параллакса, способ определения размера Земли и любого небесного тела. Что диаметр Луны во столько раз меньше диаметра Солнца, во сколько раз расстояние от Луны до Земли меньше расстояния от Земли до Солнца.

Уметь:
I-й уровень (стандарт)
II-й уровень -определять расстояния до тел СС используя параллакс и данные радиолокации, определять размеры небесных тел.

Оборудование: Таблицы: «Солнечная система», теодолит, к/ф «Радиолокация», диапозитивы, диафильм «Определение расстояний до небесных тел». CD- "Red Shift 5.1". ШАК.

Межпредметная связь : Градусная и радианная меры угла, смежные и вертикальные углы. Шар и сфера (математика, 5, 7, 10, 11 кл.). Расстояние от Земли до Луны и Солнца. Сравнительные размеры Солнца и Земли, Земли и Луны (природоведение, 5 кл). Скорость распространения электромагнитных волн. Метод радиолокации (физика, 11 кл).

Ход урока:

I. Опрос учащихся (5-7 минут). Диктант.

II Новый материал

1) Определение расстояний до небесных тел.
В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а. е.).
1-й способ: (известен) По третьему закону Кеплера можно определить расстояние до тел СС, зная периоды обращений и одно из расстояний.

Приближённый метод.

2-й способ: Определение расстояний до Меркурия и Венеры в моменты элонгации (из прямоугольного треугольника по углу элонгации).
3-й способ: Геометрический (параллактический).
Пример: Найти неизвестное расстояние АС.

[АВ] - Базис - основное известное расстояние, т. к. углы САВ и СВА - известны, то по формулам тригонометрии (теорема синусов) можно в? найти неизвестную сторону, т. е. . Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.
Параллакс- угол (АСВ), под которым из недоступного места виден базис (АВ - известный отрезок). В пределах СС за базис берут экваториальный радиус Земли R=6378км.

Пусть К - местонахождение наблюдателя, из которого светило видно на горизонте. Из рисунка видно, что из прямоугольного треугольника гипотенуза, расстояние D равно: , так как при малом значении угла если выражать величину угла в радианах и учитывать, что угол выражен в секундах дуги, а 1рад =57,3 0 =3438"=206265 " , то и получается вторая формула.

Угол (ρ) под которым со светила, находящегося на горизонте (? R - перпендикулярно лучу зрения) был бы виден экваториальный радиус Земли называется горизонтальным экваториальным параллаксом светила.
Т.к. со светила никто наблюдать не будет в силу объективных причин, то горизонтальный параллакс определяют так:

  1. измеряем высоту светила в момент верхней кульминации из двух точек земной поверхности, находящихся на одном географическом меридиане и имеющем известные географические широты.
  2. из полученного четырехугольника вычисляют все углы (в т. ч. параллакс).

Из истории: Первое измерение параллакса (параллакса Луны) сделано в 129г до НЭ Гиппархом (180-125, Др. Греция).
Впервые расстояния до небесных тел (Луны, Солнца, планет) оценивает Аристотель (384-322, Др. Греция) в 360г до НЭ в книге «О небе» →слишком не точно, например радиус Земли в 10000 км.
В 265г до НЭ Аристарх Самосский (310-230, Др. Греция) в работе «О величине и расстоянии Солнца и Луны» определяет расстояние через лунные фазы. Так расстояния у него до Солнца (по фазе Луны в 1 четверти из прямоугольного треугольника, т. е. впервые использует базисный метод: ЗС=ЗЛ/cos 87º≈19*ЗЛ). Радиус Луны определил в 7/19 радиуса Земли, а Солнца в 6,3 радиусов Земли (на самом деле в 109 раз). На самом деле угол не 87º а 89º52" и поэтому Солнце дальше Луны в 400 раз. Предложенные расстояния использовались многие столетия астрономами.
В 240г до НЭ ЭРАТОСФЕН (276-194, Египет) произведя измерения 22 июня в Александрии угла между вертикалью и направлением на Солнце в полдень (считал, что раз Солнце очень далеко, то лучи параллельны) и используя записи наблюдений в тот же день падения лучей света в глубокий колодец в Сиене (Асуан) (в 5000 стадий = 1/50 доли земной окружности (около 800км) т. е. Солнце находилось в зените) получает разность углов в 7º12" и определяет размер земного шара, получив длину окружности шара 39690 км (радиус=6311км). Так была решена задача определения размера Земли, используя астрогеодезический способ. Результат не был произведён до 17 века, лишь астрономы Багдадской обсерватории в 827г немного поправили его ошибку.
В 125г до НЭ Гиппарх довольно точно определяет (в радиусах Земли) радиус Луны (3/11 R ⊕ ) и расстояние до Луны (59 R ⊕ ).
Точно определил расстояние до планет, приняв расстояние от Земли до Солнца за 1а.е., Н. Коперник .
Наибольший горизонтальный параллакс имеет ближайшее тело к Земле - Луна. Р ? =57"02 " ; а для Солнца Р ¤ =8,794 "
Задача 1 : учебник Пример № 6 - Найти расстояние от Земли до Луны, зная параллакс Луны и радиус Земли.
Задача 2 : (самостоятельно). На каком расстоянии от Земли находится Сатурн, если его параллакс 0,9". [из формулы D=(206265/0,9)*6378= 1461731300км = 1461731300/149600000≈9,77а.е.]
4-й способ Радиолокационный: импульс→объект →отраженный сигнал→время . Предложен советскими физиками Л.И. Мандельштам и Н.Д. Папалекси . Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946г была произведена первая радиолокация Луны Баем в Венгрии и в США, а в 1957-1963гг — радиолокация Солнца (исследования солнечной короны проводятся с 1959г), Меркурия (с 1962г на ll = 3.8, 12, 43 и 70 см), Венеры, Марса и Юпитера (в 1964 г. на волнах l = 12 и 70 см), Сатурн (в 1973 г. на волне l = 12.5 см) в Великобритании, СССР и США. Первые эхо-сигналы от солнечной короны были получены в 1959 (США), а от Венеры в 1961 (СССР, США, Великобритания). По скорости распространения радиоволн с = 3 × 10 5 км/сек и по промежутку времени t (сек ) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела.
V ЭМВ =С=299792458м/с≈3*10 8 м/с.

Основная трудность в исследовании небесных тел методами радиолокации связана с тем, что интенсивность радиоволн при радиолокации ослабляется обратно пропорционально четвертой степени расстояния до исследуемого объекта. Поэтому радиолокаторы, используемые для исследования небесных тел, имеют антенны больших размеров и мощные передатчики. Например, радиолокационная установка центра дальней космической связи в Крыму имеет антенну с диаметром главного зеркала 70 м и оборудована передатчиком мощностью несколько сотен кВт на волне 39 см. Энергия, направляемая к цели, концентрируется в луче с углом раскрыва 25".
Из радиолокации Венеры, уточнено значение астрономической единицы: 1 а. е.=149 597 870 691 ± 6м ≈149,6 млн.км., что соответствует Р ¤ =8,7940". Так проведенная в Советском Союзе обработка данных радиолокационных измерений расстояния до Венеры в 1962-75гг (один из первых удачных экспериментов по радиолокации Венеры провели сотрудники Института радиотехники и электроники АН СССР в апреле 1961г антенной дальней космической связи в Крыму, l = 39 см) дала значение 1 а.е. =149597867,9 ±0,9 км. XVI Генеральная ассамблея Международного астрономического союза приняла в 1976г значение 1 а.е.=149597870±2 км. Путем радиолокации с КА определяется рельеф поверхности планет и их спутников, составляются их карты.
Основные антенны, используемые для радиолокации планет:
= Евпатория, Крым, диаметр 70 м, l = 39 см;
= Аресибо, Пуэрто Рико, диаметр 305 м, l = 12.6 см;
= Голдстоун, Калифорния, диаметр 64 м, l = 3.5 и 12.6 см, в бистатическом режиме прием осуществляется на системе апертурного синтеза VLA.

С изобретение Квантовых генераторов (лазера ) в 1969г произведена первая лазерная локация Луны (зеркало для отражения лазерного луча на Луне установили астронавты США «Ароllо - 11» 20.07.69г), точность измерения составили ±30 см. На рисунке показано расположение лазерных уголковых отражателей на Луне, установленных при полете КА "Луна-17, 21" и "Аполлон - 11, 14, 15". Все, за исключением отражателя Лунохода-1 (L1), работают и сейчас.
Лазерная (оптическая) локация нужна для:
-решение задач космических исследований.
-решение задач космической геодезии.
-выяснения вопроса о движении земных материков и т.д.

2) Определение размеров небесных тел.

а) Определение радиуса Земли.

б) Определение размера небесных тел .

III. Закрепление материала

  1. Пример 7 (стр. 51).
  2. CD- "Red Shift 5.1" - Определить на данный момент удаленность нижних (планет земной группы, верхних планет, планет гигантов) от Земли и Солнца в а.е.
  3. Угловой радиус Марса 9,6", а горизонтальный параллакс 18". Чему равен линейный радиус Марса? [Из формулы 22 получим 3401,6 км. (фактически 3396 км)].
  4. Каково расстояние между лазерным отражателем на Луне и телескопом на Земле, если импульс возвратился через 2,43545с? [ из формулы R=(c . t)/2 R=3 . 10 8. 2,43545/2≈365317500,92м≈365317,5км]
  5. Расстояние от Земли до Луны в перигее 363000км, а в апогее 405000км. Определите горизонтальный параллакс Луны в этих положениях. [ из формулы D=(206265"/p)*R ⊕ отсюда р=(206265"/D)*R ⊕ ; р А =(206265"/405000)*6378≈3248,3"≈54,1", р П = (206265"/363000)*6378≈3624,1"≈60,4"].
  6. с картинками по главе 2.
  7. Дополнительно , для тех кто сделал - кроссворд.

Итог:
1) Что такое параллакс?
2) Какими способами можно определить расстояние до тел СС?
3) Что такое базис? Что принимается за базис для определения расстояния до тел СС?
4) Как зависит параллакс от удаленности небесного тела?
5) Как зависит размер тела от угла?
6) Оценки

Домашнее задание: §11; вопросы и задания стр. 52, стр. 52-53 знать и уметь. Повторить полностью вторую главу. , .
Можно задать по данному разделу подготовить кроссворд, опросчик, реферат об одном из ученых-астрономов или истории астрономии (один из вопросов или направлений).
Можно предложить практическую работу "Определение размера Луны".
В период полнолуния, используя две соединенные под прямым углом линейки, определяются видимые размеры лунного диска: поскольку треугольники KCD и КАВ подобны, из теоремы о подобии треугольников следует, что: АВ/СD=KB/KD. Диаметр Луны АВ = (CD . KB)/KD. Расстояние от Земли до Луны берёте из справочных таблиц (но лучше, если сумеете вычислить его сами).

Урок оформила члены кружка "Интернет-технологии" - Леоненко Катя (11кл)

Изменен 10.11.2009 года

128,5 кб
«Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".

П. П. Добронравин

У каждого, кто начинает знакомиться с астрономией и узнает, что до Луны 380 тыс., а до Солнца 150 млн. км, что звездные расстояния измеряются вместо километров сотнями, тысячами и миллионами «световых лет» и «парсеков», возникает вполне естественное и законное сомнение: «А как же измерили эти расстояния, эти миллионы и миллиарды километров? Ведь до Луны, а тем более до Солнца и звезд добраться нельзя, следовательно, нельзя применить и обычные способы измерения расстояний».

Наука и жизнь // Иллюстрации

Рис. 1. Измерение расстояния до недоступного предмета.

Рис. 2. Измерение расстояния до Луны (относительное расстояние Луны и звезды Е сильно искажено).

Наука и жизнь // Иллюстрации

Рис. 3. Прохождение Венеры по диску Солнца (относительные размеры Солнца, Земли и Венеры не в масштабе).

Рис. 4. Противостояние Марса.

Рис. 5. Расположение орбит Марса, Эроса и Земли.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Цель этой статьи - изложить вкратце способы, которыми астрономы измеряют расстояния до тел солнечной системы - Луны и Солнца. Определению расстояний более отдаленных объектов - звезд и туманностей - мы посвятим другую статью в с дном из ближайших номеров нашего журнала.

Измерение расстояния до Луны

Способы, применяемые астрономами для определения расстояния до близких к нам небесных тел, в принципе те же самые, которые применяют геодезисты при съемочных работах, землемеры, саперы, артиллеристы и т. д.

Как измерить расстояние до предмета, подойти к которому нельзя, например, до дерева на противоположной стороне реки (рис. 1)?

Топограф или землемер поступит просто. Он отложит на «своем» берегу линию АВ и измерит ее длину. Затем, став на один конец линии в точку А, измерит угол CAB - между направлением своей линии и направлением на предмет С. Перейдя в точку В он измерит угол СВА. А дальше можно поступить двумя способами: можно отложить на бумаге линию АВ в масштабе и построить на ее концах углы CAB и СВА, пересечение сторон которых и дает на плане точку С. Расстояние ее от точек А и В (да и от любой другой точки, отмеченной на плане) представит соответствующее действительное расстояние в том же самом масштабе, в котором изображена линия АВ. Или же можно по формулам тригонометрии, зная одну сторону треугольника и два его угла, вычислить все другие его линии, в том числе и высоту СН - расстояние точки С - далекого дерева до проведенной землемером линии АВ.

Точно так же поступили и астрономы, определяя расстояние до Луны. Если в один и тот же момент два наблюдателя сфотографируют небо с Луной из двух далеких друг от друга мест А и В (рис. 2) и затем сравнят свои снимки, они увидят, что положение Луны относительно звезд несколько различно. Например, звезда Е на снимке наблюдателя А будет видна к северу от Луны, а у наблюдателя В - к югу.

Измеряя снимки или, что проще, определяя положение Луны на небе в двух местах с помощью специальных телескопов, снабженных угломерными приспособлениями, можно по видимому смещению Луны найти и ее расстояние до Земли. Вспомним одну простую теорему из геометрии - сумма углов в четырехугольнике равна 360° - и применим ее к Земле и Луне.

Измерения дадут величину углов z 1 и z 2 - углов между вертикальным направлением в обоих местах и направлением на Луну. Предположим, для простоты, что места А и В лежат на одном меридиане, т. е. на круге, проходящем через оба полюса Земли. ЕЕ - земной экватор и утлы φ 1 и φ 2 -географические широты обоих мест.

Применяя теорему к четырехугольнику OALB, где О - центр Земли, найдем, что

[(180° - z 1)+φ 1 + φ 12 + (180°-z 2)[+] p]= 360°

р = (z 1 + z 2) - (φ 1 + φ 2)

По известным углам найдем угол р, под которым из центра Луны видна линия АВ. Длина линии АВ известна, так как известен радиус Земли и положение мест наблюдения А и В. По длине этой линии и углу р, так же как и в случае недоступного предмета, можно вычислить расстояние до Луны.

Угол, под которым из центра Луны или другого небесного тела видна линия, длиной равная радиусу Земли, называется параллаксом этого небесного светила. Измерив угол р для любой линии АВ, можно вычислить и параллакс Луны.

Такие измерения были сделаны еще древними греками. Современные точные намерения дают для параллакса Луны на ее среднем расстоянии от Земли величину немного меньше градуса - 57" 2",7, т. е. Земля видна с Луны как диск диаметром почти в 2° (в 4 раза больше диаметра видимого нами диска Луны).

Отсюда следует между прочим тесьма интересный вывод: жители Луны (если бы они были там) с большим правом смогли бы сказать, что Земля служит для освещения Луны, чем мы говорим обратное. В самом деле: диск Земли, видимый с Луны, по площади в 14 раз больше видимого нами диска Луны; а так как каждый участок поверхности диска Земли отражает в 6 раз больше света (из-за наличия атмосферы), чем такой же участок диска Луны, то Земля посылает на Луну в 80 раз больше света, чем Луна на Землю (при одинаковых фазах).

По параллаксу Луны сейчас же находим, что расстояние до нее в 60,267 раз больше радиуса Земли или равно 384 400 км.

Однако - это среднее расстояние: путь Луны не точный круг, и Луна, обращаясь вокруг Земли, то подходит к ней на 363000 км, то удаляется на 405 000 км.

Так решается первая, самая простая задача - измерение расстояния до самого близкого к нам небесного тела. Это сравнительно не трудно, потому что видимое смещение Луны велико, и его можно было измерить с помощью даже тех примитивных приборов, которыми пользовались древние астрономы.

Чему равно расстояние до Солнца

Казалось бы, можно применить тот же самый способ и для измерения расстояния: до Солнца - произвести одновременные наблюдения в двух местах, вычислить углы четырехугольников и треугольников, и задача решена. На деле, однако, обнаружилось весьма много трудностей.

Уже древние греки установили, что Солнце во много раз дальше Луны, но во сколько именно - установить не смогли.

Древнегреческий астроном Аристарх нашел, что Солнце в 20 раз дальше Луны; это измерение было неверно. В 1650-1675 гг. голландские и французские астрономы показали, что Солнце дальше Луны примерно в 400 раз. Стало понятным, почему не удавались попытки обнаружить видимое смещение Солнца, как это удалось сделать для Луны. Ведь параллакс Солнца в 400 раз меньше параллакса Луны, всего около 1/400 градуса, или 9 сек. дуги. А это значит, что даже при наблюдении с двух мест Земли, лежащих на противоположных концах диаметра Земли, например с северного и южного полюсов, видимое смещение Солнца было бы равно видимой толщине проволоки в 0,1 мм (человеческий волос) при рассматривании ее с расстояния в 1,5 м. Величина ничтожная, и заметить ее трудно, хотя и возможно с помощью точного угломерного прибора.

Но возникают большие добавочные трудности. Луну наблюдают ночью и ее положение сравнивают с положениями соседних звезд. Днем звезд не видно, и сравнивать положение Солнца не с чем, приходится целиком полагаться на разделенные круги самого прибора. Прибор нагревается лучами Солнца, различные части его деформируются, вызывая появление новых ошибок. Да и сам воздух, нагретый лучами Солнца, неспокоен, край Солнца кажется волнующимся, дрожащим, по небу как бы бегут волны. Погрешности наблюдений будут больше той величины, которую необходимо измерить. От самого простого метода пришлось отказаться и пойти обходными путями.

Наблюдения видимых движений планет производились еще в глубокой древности. Из сравнения этих наблюдений с современными удалось с очень большой точностью определить время обращения планет вокруг Солнца. Так например, мы знаем что Марс совершает свой оборот в 1,8808 земных года. Но третий закон Кеплера говорит: «Квадраты времен обращения планет относятся, как кубы их средних расстояний от Солнца». Отсюда, принимая за единицу среднее расстояние Земли от Солнца, можно вычислить, что среднее расстояние Марса равно 1,5237. Таким путем можно построить точный «план» солнечной системы, нанести орбиты планет, Земли, комет, но у плана будет не хватать «мелочи» - масштаба. Мы сможем уверенно сказать, что Венера в 1,38 раза ближе к Солнцу, чем Земля, а Марс в 1,52 раз дальше, но ничего не будем знать о том, сколько же километров от Венеры или Земли до Солнца. Достаточно, однако, найти хотя бы одно из расстояний в километрах: мы получим в свои руки масштаб и, пользуясь им, сможем измерить любое расстояние на плане.

Именно этот способ был применен для измерения расстояния от Солнца до Земли. Меркурий и Венера находятся ближе к Солнцу, чем Земля. Может оказаться, что когда Земля и Венера будут находиться по одну сторону от Солнца, - центры Солнца и обеих планет окажутся на одной "прямой линии (рис. 3). Венера будет видна с Земли на диске Солнца. Расстояние от Земли до Венеры будет почти в 4 раза меньше расстояния до Солнца, а параллакс ее почти в 4 раза больше параллакса Солнца. Кроме того, нужно будет определить положение Венеры относительно центра Солнца, что можно сделать гораздо точнее, чем определение видимого положения Солнца (ошибки, присущие инструменту, влияют значительно меньше при определении относительного положения двух небесных тел).

Если бы движение Земли и Венеры происходило в одной и той же плоскости, то «прохождения Венеры по диску Солнца» наблюдались бы каждый раз, когда Венера, движущаяся быстрее Земли, обгоняет ее, т. е. примерно раз в 1 год и 7 мес. Но плоскости путей Земли и Венеры наклонены друг к другу. Обгоняя Землю, Венера проходит выше или ниже Солнца и не может быть наблюдаема, так как она повернута к Земле темной, не освещенной Солнцем стороной. Мы увидим ее на диске Солнца лишь в том случае, если и «обгон» будет происходить вблизи линии пересечения плоскостей орбит обеих планет.

Такое «счастливое совпадение» случается не часто. После одного прохождения второе следует через 8 лет, но зато следующее - лишь через 105-120 лет. Впервые явление наблюдали в 1639 г. Следующие прохождения - 1761, 1769, 1874 и 1882 гг. наблюдались уже весьма тщательно для определения точного расстояния до Солнца. Для наблюдения последних двух прохождений было снаряжено большое число специальных экспедиций. Наблюдатели в далеко расположенных пунктах с наибольшей доступной точностью наблюдали моменты начала и конца явления, а также положение Венеры на диске Солнца. При наблюдениях последних прохождений применялось уже фотографирование Солнца. Видимый путь Венеры по диску Солнца будет несколько смещен у обоих наблюдателей (рис. 3). Из величины смещения можно вычислить расстояние от Земли до Венеры, т. е. найти тот ключ, масштаб, которого недоставало в построенном плане солнечной системы. Наблюдений прохождений Венеры дали для параллакса Солнца величину 8",86 и для расстояния Солнца - 148 000 000 км.

Два ближайших прохождения Венеры по диску Солнца будут наблюдаться 8 июня 2004 г. и 6 июня 2012 г.

Могут наблюдаться и прохождения по диску Солнца ближайшей к Солнцу планеты - Меркурия. Они бывают значительно чаще, чем прохождения Венеры, но представляют несравненно меньше интереса для определения расстояния до Солнца: в момент прохождения расстояние от Земли до Меркурия составляет около 90 млн. км, и параллакс его лишь в 1,5 раза больше параллакса Солнца.

Другое удобное расположение планет бывает тогда, когда Земля, двигаясь быстрее Марса, перегоняет его (рис. 4). В это время Марс виден на ночном небе в противоположном от Солнца направлении, почему такие положения его и называются противостояниями. Расстояние между Землей и Марсом уменьшается в среднем до 78 млн. км. Однако орбита Марса сильно отлична от круга, и если сближение Марса и Земли происходит в августе - сентябре, расстояние до Марса может быть всего 56 млн. км. Марс виден всю ночь, и его положение можно очень точно определить, пользуясь как опорными точками близкими звездами.

Наблюдения из двух пунктов дадут параллакс Марса, а отсюда можно вычислить его расстояние и по нему - масштаб к плану солнечной системы. Приближения Марса и Земли - противостояния Марса - повторяются приблизительно через 2 года и 2 мес., а так называемые «великие противостояния», когда Марс ближе всего к Земле, - раз в 15 -17 лет. Последнее «великое противостояние» было 24 августа 1924 г., а следующее будет 23 июля 1939 г. Каждое противостояние используется не только для определения расстояния, но и для физических наблюдений самого Марса.

Еще ближе к Земле может подойти Эрос, одна из семейства малых планет, орбиты большинства которых лежат между орбитам Марса и Юпитера. Орбита Эроса очень сильно отлична от круга, и значительная часть ее лежит даже внутри орбиты Марса (рис. 5). В некоторых случаях расстояние между Землей и Эросом может уменьшаться до 22 млн. км, т. е. до 1/7 расстояния Солнца, довольно близко Эрос подходил к Земле в 1900-1901 гг. (на 48 млн. км) и в 1930- 1931 гг. (на 26 млн. км). Эрос наблюдался в это время, как звездочка, положение которой среди других звезд может быть определено весьма точно.

Нужно заметить, что для определения параллакса по наблюдениям Эроса не нужно обязательно производить наблюдения из двух далеких пунктов. Вращение Земли вокруг оси уносит с собой наблюдателя и, если он находится на экваторе, за 12 час. вращение Земли перенесет его на расстояние, равное диаметру Земли, или 12,7 тыс. км. Наблюдатель, расположенный к северу или к югу от экватора, переместится меньше. И если снимки Эроса произведены в начале и в конце ночи, - они равносильны снимкам, сделанным на большом расстоянии друг от друга. Нужно, конечно, принять во внимание движение Земли и Эроса по орбитам за время между снимками.

Существуют ещё другие способы измерения расстояния до Солнца, но они не являются основными, и рассматривать их мы не имеем возможности. Между прочим такой же метод использовался древними и для определения параллакса Луны.

Сопоставление всех наиболее точных определений дает для параллакса Солнца величину 8",803 с возможной ошибкой в 0",001, а отсюда - среднее расстояние Земли равно 149 450 000 км с возможной ошибкой в 17 000 км.

Среднее расстояние Солнца-Земля является основным для выражения других расстояний в солнечной системе и названо «астрономической единицей». Но действительное расстояние до Солнца может отличаться от среднего, так как путь Земли около Солнца - не круг, а эллипс. В июле расстояние до Солнца на 2,5 млн. км больше среднего, а в январе на столько же меньше.

Астрономическая единица есть та мера, которой мы измеряем «не только все расстояния до тел солнечной системы, но и расстояния самых далеких звезд, туманностей и звездных скоплений. Словом, это та мера, при помощи которой мы определяем масштаб строения вселенной. Поэтому на определения ее потрачено много усилий, и известна она современной науке с большой точностью.

Может показаться, что указанная выше ошибка в 17 000 км велика; но не надо забывать, что эта ошибка составляет лишь немногим больше 0,0001 всей астрономической единицы. Представим себе, что мы измерили длину комнаты в 9 м и при этом измерении ошиблись всего лишь на 1 мм. По сравнению с длиной комнаты эта ошибка соответствует точности, с которой известно среднее расстояние Земли от Солнца. Но если попробовать на самом деле измерить длину в 9 м с ошибкой в 1 мм, - это окажется совсем не так просто: потребуется большое внимание и хорошие измерительные инструменты, чтобы обеспечить такую точность при обыкновенном измерении по гладкому полу, во всех точках доступному измерителю. Тем более нужно отдать должное точности, с которой произведено измерение через межпланетное пространство расстояния до Солнца, к которому ни один человек ее приближался ближе чем на 147 млн. км, - расстояние, которое пушечное ядро сможет пролететь, двигаясь со скоростью 1000 м/сек, только в 4,5 года.

© 2024 Сайт по саморазвитию. Вопрос-ответ