Вконтакте Facebook Twitter Лента RSS

Элементарный заряд. Закон сохранений заряда Проводники Полупроводники Диэлектрики Закон Кулона

Проводники это тела, в которых электрические заряды способны перемещаться под действием как угодно слабого электростатического поля.

Вследствие этого сообщенный проводнику заряд будет перераспределяться до тех пор, пока в любой точке внутри проводника напряженность электрического поля не станет равной нулю.

Таким образом, напряженность электрического поля внутри проводника должна быть равной нулю.

Так как , то , φ=const

Потенциал внутри проводника должен быть постоянен.

2.) На поверхности заряженного проводника вектор напряженности Е должен быть направлен по нормали к этой поверхности, иначе под действием составляющей, касательной к поверхности (Е t). заряды перемещались бы по поверхности проводника.

Таким образом, при условии статического распределения зарядов напряженность на поверхности

где E n -нормальная составляющая напряженности.

Отсюда следует, что при равновесии зарядов поверхность проводника является эквипотенциальной.

3. В заряженном проводнике некомпенсированные заряды располагаются только на поверхности проводника.

Проведём внутри проводника произвольную замкнутую поверхность S, ограничивающую некоторый внутренний объём проводника. Согласно теореме Гаусса, суммарный заряд этого объёма равен:

Таким образом, в состоянии равновесия внутри проводника избыточных зарядов нет. Поэтому если мы удалим вещество из некоторого объёма, взятого внутри проводника, то это никак не отразится на равновесном расположении зарядов. Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т.е. по его наружной поверхности. На внутренней поверхности избыточные заряды располагаться не могут. Это следует также из того, что одноимённые заряды отталкиваются и, следовательно, стремятся расположиться на наибольшем расстоянии друг от друга.

Исследуя величину напряжённости электрического поля вблизи поверхности заряженных тел различной формы можно судить и о распределении зарядов по поверхности.

Исследования показали, что плотность зарядов при данном потенциале проводника определяется кривизной поверхности – она растёт с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости).Особенно велика бывает плотность на остриях. Напряженность поля вблизи остриёв может быть настолько большой, что происходит ионизация молекул окружающего газа. При этом заряд проводника уменьшается, он как бы стекает с острия.

Если поместить на внутреннюю поверхность полого проводника электрический заряд, то этот заряд перейдёт на наружную поверхность проводника, повышая потенциал последнего. Многократно повторяя передачу полому проводнику можно значительно повысить его потенциал до величины, ограничиваемой явлением стекания зарядов с проводника. Этот принцип был использован Ван-дер-Граафом для построения электростатического генератора. В этом устройстве заряд от электростатической машины передаётся бесконечной непроводящей ленте, переносящий его внутрь большой металлической сферы. Там заряд снимается и переходит на наружную поверхность проводника, таким образом, удаётся постепенно сообщить сфере очень большой заряд и достигнуть разности потенциалов в несколько миллионов вольт.

Проводники во внешнем электрическом поле.

В проводниках могут свободно перемещаться не только заряды, принесённые извне, но и заряды, из которых состоят атомы и молекулы проводника (электроны и ионы). Поэтому при помещении незаряженного проводника во внешнее электрическое поле свободные заряды будут перемещаться к его поверхности, положительные по полю, а отрицательные против поля. В результате у концов проводника возникают заряды противоположного знака, называемые индуцированными зарядами. Это явление, состоящее в электризации незаряженного проводника во внешнем электростатическом поле путём разделения на этом проводнике уже имеющихся в нём в равных количествах положительных и отрицательных электрических зарядов называется электризацией через влияние или электростатической индукцией .


Перемещение зарядов в проводнике помещённом во внешнее электрическое поле Е 0 будет происходить до тех пор, пока создаваемое индукционными зарядами дополнительное поле Е доп не скомпенсирует внешнее поле Е 0 во всех точках внутри проводника и результирующее поле Е внутри проводника станет равным нулю.

Суммарное поле Е вблизи проводника будет заметно отличаться от своего первоначального значения Е 0 . Линии Е будут перпендикулярны к поверхности проводника и будут частично кончаться на индуцированных отрицательных зарядах и вновь начинаться на индуцированных положительных зарядах.

Индуцированные на проводнике заряды исчезают, когда проводник удаляют из электрического поля. Если предварительно отвести индуцированные заряды одного знака на другой проводник (например в землю) и отключить последний, то первый проводник останется заряженным электричеством противоположного знака.

Отсутствие поля внутри проводника, помещённого в электрическое поле, широко применяется в технике для электростатической защиты от внешних электрических полей (экранировки) разных электрических приборов и проводов. Когда какой-то прибор хотят защитить от воздействия внешних полей, его окружают проводящим футляром (экраном). Подобный экран действует хорошо и в том случае, если его сделать не сплошным, а в виде густой сетки.

ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

§1 Распределение заряда в проводнике.

Связь между напряженностью поля у поверхности проводника и поверхностной плотностью заряда

Следовательно, поверхность проводника при равновесии зарядов является эквипотенциальной.

При равновесии зарядов ни в каком месте внутри проводника не может быть избыточных зарядов - все они распределены по поверхности проводника с некоторой плотностью σ.

Рассмотрим замкнутую поверхность в форме цилиндра, образующие которого перпендикулярны поверхности проводника. На поверхности проводника расположены свободные заряды с поверхностной плотностью σ.

Т.к. внутри проводника зарядов нет, то поток через поверхность цилиндра внутри проводника равен нулю. Поток через верхнюю часть цилиндра вне проводника по теореме Гаусса равен

т.е. вектор электрического смещения равен поверхностной плотности свободных зарядов проводника или

2. При внесении незаряженного проводника во внешнее электростатическое поле свободные заряды начнут перемещаться: положительные - по полю, отрицательные - против поля. Тогда с одной стороны проводника будут накапливаться положительные, а с другой отрицательные заряды. Эти заряды называются ИНДУЦИРОВАННЫМИ . Процесс перераспределения зарядов будет происходить до тех пор, пока напряженность внутри проводника не станет равной нулю, а линии напряженности вне проводника перпендикулярны его поверхности. Индуцированные заряды появляются на проводнике вследствие смещения, т.е. являются поверхностной плотностью смещенных зарядов и т.к. то поэтому назвали вектором электрического смещения.

§2 Электроемкость проводников.

Конденсаторы

  1. УЕДИНЕННЫМ называется проводник, удаленный от других проводников, тел, зарядов. Потенциал такого проводника прямо пропорционален заряду на нем

Из опыта следует, что разные проводники, будучи одинаково заряженными Q 1 = Q 2 приобретает различные потенциалы φ 1 ¹ φ 2 из-за различной формы, размеров и окружающей проводник среды (ε). Поэтому для уединенного проводника справедлива формула

где - емкость уединенного проводника . Емкость уединенного проводника равна отношению заряда q , сообщение которого проводнику изменяет его потенциал на 1 Вольт.

В системе SI емкость измеряется в Фарадах

Емкость шара


Рассчитаем емкость плоского конденсатора с площадью пластин S , поверхностной плотностью заряда σ, диэлектрической проницаемостью ε диэлектрика между пластинами, расстоянием между пластинами d . Напряженность поля равна

Используя связь Δφ и Е , находим

Емкость плоского конденсатора.

Для цилиндрического конденсатора:

Для сферического конденсатора

Т.к. при некоторых значениях напряжения в диэлектрике наступает пробой (электрический разряд через слой диэлектрика), то для конденсаторов существует пробивное напряжение. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.

  1. Емкость при параллельном и последовательном соединении конденсаторов

а) параллельное соединение

По закону сохранения заряда

б) последовательное соединение

По закону сохранения заряда

§3 Энергия электростатического поля

  1. Энергия системы неподвижных точечных зарядов

Электростатическое поле является потенциальным. Силы, действующие между зарядами - консервативные силы. Система неподвижных точечных зарядов должна обладать потенциальной энергией. Найдем потенциальную энергию двух неподвижных точечных зарядов q 1 и q 2 , находящихся на расстоянии r друг от друга.

Потенциальная энергия заряда q 2 в поле, создаваемом

зарядом q 1 , равна

Аналогично, потенциальная энергия заряда q 1 в поле, создаваемом зарядом q 2 , равна

Видно, что W 1 = W 2 , тогда обозначив потенциальную энергию системы зарядов q 1 и q 2 через W , можно записать

Лекция 14. Проводники в электрическом поле.

Электроемкость проводников и конденсаторов.

Гл.11, §92-95

План лекции

    Распределение зарядов на проводнике. Проводник во внешнем электрическом поле.

    Электроемкость уединенного проводника. Электроемкость шара.

    Конденсаторы и их электроемкость. Последовательное и параллельное соединение конденсаторов.

    Энергия электростатического поля.

    Распределение зарядов на проводнике. Проводник во внешнем электрическом поле.

Под словом «проводник» в физике понимается проводящее тело любых размеров и формы, содержащее свободные заряды (электроны или ионы). Для определенности в дальнейшем будем рассматривать металлы.

Если проводнику сообщить некоторый заряд q, то он распределится так, чтобы соблюдалось условие равновесия (т.к. одноименные заряды отталкиваются, они располагаются на поверхности проводника).

т.к. аЕ=0, то

в любой точке внутри проводника Е=0.


во всех точках внутри проводника потенциал постоянен.

    Т.к. при равновесии заряды не движутся по поверхности проводника, то работа по их перемещению равна нулю:

т.е. поверхность проводника является эквипотенциальной.

Если S - поверхность заряженного проводника, то внутри нееE=0,

т.е. заряды располагаются на поверхности проводника.

6. Выясним, как связана поверхностная плотность заряда с кривизной поверхности.

Для заряженной сферы

Плотность зарядов определяется кривизной поверхности проводника: растет с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости). Особенно великана острие. При этом имеющиеся в воздухе в небольшом количестве ионы обоих знаков и электроны разгоняются вблизи острия сильным полем и ударяясь об атомы газа, ионизируют их. Создается область пространственного заряда, откуда ионы того же знака, что и острие, выталкиваются полем, увлекая за собой атомы газа. Поток атомов и ионов, направленный от острия, создает впечатление «стекания зарядов». При этом острие разрежается попадающими на него ионами противоположного знака. Возникающее при этом ощутимое движение газа у острия называют «электрическим ветром».

Проводник во внешнем электрическом поле:

При внесении незаряженного проводника в электрическое поле его электроны (свободные заряды) приходят в движение, на поверхности проводника появляются индуцированные заряды, поле внутри проводника равно нулю. Это используют для электростатической защиты, т.е. экранировки электро- и радиоприборов (и человека) от влияния электростатических полей. Прибор окружают проводящим экраном (сплошным или в виде сетки). Внешнее поле компенсируется внутри экрана полем возникающих на его поверхности индуцированных зарядов.

    Электроемкость уединенного проводника. Электроемкость шара.

Если заряд на проводнике увеличить в несколько раз, потенциал в каждой точке поля, окружающего проводник, возрастет:

Электроемкость проводника численно равна заряду, который нужно сообщить проводнику для изменения его потенциала на единицу.

1 Ф - емкость проводника, которому нужно сообщить заряд 1 Кл для изменения потенциала на 1 В.

Емкость проводника не зависит от металла, из которого он изготовлен.

Емкость зависит от размеров и формы проводника, окружающей среды и наличия вблизи других проводников. В диэлектрике емкость увеличивается в раз.

Вычислим емкость шара:

    Конденсаторы и их электроемкость. Последовательное и параллельное соединение конденсаторов.

Емкость уединенных проводников невелика, но она резко возрастает при наличии рядом других проводников, т.к. потенциал уменьшается за счет противоположно направленного поля индуцированных зарядов.

Это обстоятельство позволило создать устройства - конденсаторы, которые позволяют при небольших относительно окружающих тел потенциалах накапливать на себе («конденсировать») заметные по величине заряды.

Конденсатор - система из двух проводников, разделенных диэлектриком, расположенных на небольшом расстоянии друг от друга.

Поле сосредоточенно в пространстве между обкладками.

Конденсаторы разделяются:

    по форме: плоские, цилиндрические, сферические;

    по роду диэлектрика между обкладками:

воздушные, бумажные, слюдяные, керамические;

    по виду емкости: постоянной и переменной емкости.

Обозначения на радиосхемах

Емкость конденсатора численно равна заряду, который нужно сообщить одной из обкладок, чтобы разность потенциалов между ними изменить на единицу.

.

Она зависит от размеров и формы обкладок, расстояния и диэлектрика между ними и не зависит от их материала.

Емкость плоского конденсатора:

S - площадь обкладок,d - расстояние между ними.

Емкость реального конденсатора определяется этой формулой тем точнее, чем меньше d по сравнению с линейными размерами обкладок.

а) параллельное соединение конденсаторов

по закону сохранения заряда

Если C 1 = C 2 = ... = C ,C об =CN.

б) последовательное соединение конденсаторов

Если С 1 = С 2 = ... = С,
.

    Энергия электростатического поля.

А. Энергия заряженного проводника.

Если имеется заряженный проводник, то его заряд фактически «слеплен» из одноименных элементарных зарядов, т.е. заряженный проводник обладает положительной потенциальной энергией взаимодействия этих элементарных зарядов.

Если этому проводнику сообщить одноименный с ним заряд dq, будет совершена отрицательная работаdA , на величину которой возрастет потенциальная энергия проводника

,

где - потенциал на поверхности проводника.

При сообщении незаряженному проводнику заряда qего потенциальная энергия станет равной

т.к.
.

Б. Энергия заряженного конденсатора.

Полная энергия заряженного конденсатора равна той работе, которую надо совершить для его зарядки. Будем заряжать конденсатор, перенося заряженные частицы с одной пластины на другую. Пусть в результате такого переноса к какому-то моменту времени пластины приобрели заряд q, а разность потенциалов между ними стала равной

.

Для переноса очередной порции заряда dq необходимо совершить работу

Следовательно, полная энергия, затраченная на зарядку конденсатора

от 0 до q

Вся эта работа пошла на увеличение потенциальной энергии:

(1)

Объемная плотность энергии электростатического поля

Выразим энергию электрического поля конденсатора через величины, характеризующие электрическое поле:

(2)

где V=Sd- объем, занимаемый полем.

Формула (1) связывает энергию конденсатора с зарядом на его обкладках, формула (2) - с напряженностью поля. Где же локализована энергия, что является носителем энергии - заряды или поле? Ответ вытекает из существования электромагнитных волн, распространяющихся в пространстве от передатчика к приемнику и переносящих энергию. Возможность такого переноса свидетельствует о том, что энергия локализована в поле и переносится вместе с ним. В пределах электростатики бессмысленно разделять энергию заряда и поля, поскольку постоянные во времени поля и обуславливающие их заряды не могут существовать обособленно друг от друга.

Если поле однородно (плоский конденсатор), заключенная в нем энергия распределяется в пространстве с постоянной плотностью.

объемная плотность энергии.

Проводниками называют тела с высокой концентрацией свободных заряженных частиц, способных перемещаться под действием электрического поля. Если сообщить проводнику некоторый избыточный заряд, то составляющие его свободные заряженные частицы будут перемещаться (положительные - в область с меньшим потенциалом, отрицательные - наоборот) до тех пор, пока потенциалы во всех точках проводника не станут одинаковыми. При этом достигается состояние, когда внутри проводника напряженность равна нулю, а на поверхности векторы напряженности перпендикулярны к ней. Если выбрать внутри проводника замкнутую поверхность S , которая очень близка к поверхности проводника (рис. 37.1), то в соответствии с теоремой Гаусса поток вектора напряженности через эту поверхность будет равен нулю. Это означает, что внутри нее заряд отсутствует и весь избыточный заряд распределяется по внешней поверхности проводника. Выясним, от чего зависит поверхностная плотность заряда.

Для этого рассмотрим два металлических шарика, соединенных тонкой проволокой (рис. 37.2). Шарики и проволока составляют единый проводник и потому потенциалы их одинаковы во всех точках. Потенциал первого шарика равен , площадь его поверхности . Выразим заряд и поверхностную плотность заряда на поверхности этого шарика:

; .

Аналогичные выражения получаются для второго шарика:

; .

Разделив выражения для плотностей заряда, находим

Заряд, сообщенный проводнику, распределяется по внешней поверхности проводника, при этом поверхностная плотность заряда обратно пропорциональна радиусу поверхности.

Величина, обратная радиусу поверхности в данной ее точке,называетсякривизной поверхности. Там, где меньше радиус, кривизна поверхности больше, и наоборот. У выступов и заострений кривизна поверхности максимальна, согласно выражению (37.1) там будет максимальна и поверхностная плотность заряда.

Таким образом, приходим к заключению:

Все точки внутри и на поверхности заряженного проводника имеют одинаковый потенциал,

В проводниках электрические заряды могут свободно перемещаться под действием поля. Силы, действующие на свободные электроны металлического проводника, помещенного во внешнее электростатическое поле, пропорциональны напряженности этого поля. Поэтому под действием внешнего поля заряды в проводнике перераспределяются так, чтобы напряженность поля в любой точке внутри проводника была равна нулю.

На поверхности заряженного проводника вектор напряженности должен быть направлен по нормали к этой поверхности, иначе под действием составляющей вектора , касательной к поверхности проводника, заряды перемещались бы по проводнику. Это противоречит их статическому распределению. Таким образом:

1. Во всех точках внутри проводника , а во всех точках его поверхности , .

2. Весь объем проводника, находящегося в электростатическом поле, является эквипотенциальным, в любой точке внутри проводника:

Поверхность проводника также эквипотенциальна, так как для любой линии поверхности

3. В заряженном проводнике нескомпенсированные заряды располагаются только на поверхности проводника. Действительно, проведем внутри проводника произвольную замкнутую поверхность , ограничивающую некоторый внутренний объем проводника (рис.1.3.1). Тогда согласно теореме Гаусса суммарный заряд этого объема равен:

так как в точках поверхности , находящихся внутри проводника, поля нет.

Определим напряженность поля заряженного проводника. Для этого выделим на его поверхности произвольную малую площадку и построим на ней цилиндр высоты с образующей, перпендикулярной к площадке , с основаниями и , параллельными . На поверхности проводника и вблизи нее векторы и перпендикулярны к этой поверхности, и поток вектора сквозь боковую поверхность цилиндра равен нулю. Поток электрического смещения сквозь также равен нулю, так как она лежит внутри проводника, и во всех ее точках .

Поток смещения сквозь всю замкнутую поверхность цилиндра равен потоку сквозь верхнее основание :

По теореме Гаусса этот поток равен сумме зарядов , охватываемых поверхностью:

,

где - поверхностная плотность зарядов на элементе поверхности проводника. Тогда

И , так как .

Таким образом, если электростатическое поле создается заряженным проводником, то напряженность этого поля на поверхности проводника прямо пропорциональна поверхностной плотности зарядов, находящихся в нем.

Исследования распределения зарядов на проводниках различной формы, находящихся в однородном диэлектрике вдали от других тел показали, что распределение зарядов во внешней поверхности проводника зависит только от ее формы: чем больше кривизна поверхности, тем больше плотность зарядов ; на внутренних поверхностях замкнутых полых проводников избыточные заряды отсутствуют и .

Большая величина напряженности поля вблизи острого выступа на заряженном проводнике приводит к электрическому ветру. В сильном электрическом поле около острия положительные ионы, имеющиеся в воздухе, движутся с большой скоростью, сталкиваясь с молекулами воздуха и ионизируя их. Возникает все большее число движущихся ионов, образующих электрический ветер. Вследствие сильной ионизации воздуха около острия оно быстро теряет электрический заряд. Поэтому для сохранения заряда на проводниках стремятся, чтобы поверхности их не имели острых выступов.

1.3.2.ПРОВОДНИК ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Если незаряженный проводник внести во внешнее электростатическое поле, то под влиянием электрических сил свободные электроны будут перемещаться в нем в направлении, противоположном направлению напряженности поля. В результате этого на двух противоположных концах проводника появятся разноименные заряды: отрицательный на том конце, где оказались лишние электроны, и положительный - на том, где электронов не хватает. Эти заряды называются индуцированными. Явление, состоящее в электризации незаряженного проводника во внешнем электрическом поле путем разделения на этом проводнике уже имеющихся в нем в равных количествах положительных и отрицательных электрических зарядов, называется электризацией через влияние или электростатической индукцией. Если проводник удалить из поля, индуцированные заряды исчезают.

Индуцированные заряды распределяются по внешней поверхности проводника. Если внутри проводника имеется полость, то при равномерном распределении индуцированных зарядов поле внутри нее равно нулю. На этом основана электростатическая защита. Когда прибор хотят оградить (экранировать) от внешних полей, его окружают проводящим экраном. Внешнее поле компенсируется внутри экрана возникающими на его поверхности индуцированными зарядами.

1.3.3.ЭЛЕКТРОЕМКОСТЬ УЕДИНЕННОГО ПРОВОДНИКА

Рассмотрим проводник, находящийся в однородной среде вдали от других проводников. Такой проводник называется уединенным. При сообщении этому проводнику электричества, происходит перераспределение его зарядов. Характер этого перераспределения зависит от формы проводника. Каждая новая часть зарядов распределяется по поверхности проводника подобно предыдущей, таким образом, при увеличении в раз заряда проводника во столько же раз возрастает поверхностная плотность заряды в любой точке его поверхности , где - некоторая функция координат рассматриваемой точки поверхности.

Поверхность проводника разобьем на бесконечно малые элементы , заряд каждого такого элемента равен , и его можно считать точечным. Потенциал поля заряда в точке, отстоящей от него на расстояние равен:

Потенциал в произвольной точке электростатического поля, образованного замкнутой поверхностью проводника, равен интегралу:

(1.3.1)

Для точки, лежащей на поверхности проводника, является функцией координат этой точки и элемента . В этом случае интеграл зависит только от размеров и формы поверхности проводника. При этом для всех точек проводника потенциал одинаков, поэтому и значения одинаковы.

Считается, что потенциал незаряженного уединенного проводника равен нулю.

Из формулы (1.3.1) видно, что потенциал уединенного проводника прямо пропорционален его заряду. Отношение называется электрической емкостью

. (1.3.2)

Электроемкость уединенного проводника численно равна электрическому заряду, который нужно сообщить этому проводнику для того, чтобы потенциал проводника изменился на единицу. Электроемкость проводника зависит от его формы и размеров, причем геометрически подобные проводники обладают пропорциональными емкостями, так как распределение зарядов на них также подобно, а расстояния от аналогичных зарядов до соответствующих точек поля прямо пропорциональны линейным размерам проводников.

Потенциал же электростатического поля, создаваемого каждым точечным зарядом, обратно пропорционален расстоянию от этого заряда. Таким образом, потенциалы одинаково заряженных и геометрически подобных проводников изменяются обратно пропорционально их линейным размерам, а емкости этих проводников – прямо пропорционально.

Из выражения (1.3.2) видно, что емкость прямо пропорциональна диэлектрической проницаемости среды. Ни от материала проводника, ни от его агрегатного состояния, ни от формы и размеров возможных полостей внутри проводника его емкость не зависит. Это связано с тем, что избыточные заряды распределены только на внешней поверхности проводника. не зависит также от и .

Единицы емкости: - фарад, производные от него ; .

Емкость Земли как проводящего шара () равна .

1.3.4. ВЗАИМНАЯ ЭЛЕКТРОЕМКОСТЬ. КОНДЕНСАТОРЫ

Рассмотрим проводник , вблизи которого имеются другие проводники. Этот проводник уже нельзя считать уединенным, его емкость окажется большей, чем емкость уединенного проводника. Это связано с тем, что при сообщении проводнику заряда окружающие его проводники заряжаются через влияние, причем ближайшими к наводящему заряду оказываются заряды противоположного знака. Эти заряды несколько ослабляют поле, создаваемое зарядом . Таким образом, они понижают потенциал проводника и повышают его электроемкость (1.3.2).

Рассмотрим систему, составленную из близко расположенных проводников, заряды которых численно равны, но противоположны по знаку. Обозначим разность потенциалов между проводниками , абсолютная величина зарядов равна . Если проводники находятся вдали от других заряженных тел, то

где - взаимная электроемкость двух проводников:

- она численно равна заряду, который необходимо перенести с одного проводника на другой для изменения разности потенциалов между ними на единицу.

Взаимная электроемкость двух проводников зависит от их формы, размеров и взаимного расположения, а также от диэлектрической проницаемости среды. Для однородной среды .

Если один из проводников удалить, то разность потенциалов возрастает, и взаимная емкость убывает, стремясь к значению емкости уединенного проводника.

Рассмотрим два разноименно заряженных проводника, у которых форма и взаимное расположение таковы, что создаваемое ими поле сосредоточено в ограниченной области пространства. Такая система называется конденсатором.

1.Плоский конденсатор имеет две параллельные металлические пластины площадью , расположенные на расстоянии одна от другой (1.3.3). Заряды пластин и . Если линейные размеры пластин велики по сравнению с расстоянием , то электростатическое поле между пластинами можно считать эквивалентным полю между двумя бесконечными плоскостями, заряженными разноименно с поверхностными плотностями зарядов и , напряженность поля , разность потенциалов между обкладками , тогда , где - диэлектрическая проницаемость среды, заполняющей конденсатор.

2.Сферический конденсатор состоит из металлического шара радиусом , окруженного концентрическим с ним полым металлическим шаром радиусом , (рис.1.3.4). Вне конденсатора поля, создаваемые внутренней и внешними обкладками, взаимно уничтожаются. Поле между обкладками создается только зарядом шара , так как заряд шара не создает внутри этого шара электрического поля. Поэтому разность потенциалов между обкладками: , тогда

При внутреннюю обкладку сферического конденсатора можно рассматривать как уединенный шар. В этом случае , и .

© 2024 Сайт по саморазвитию. Вопрос-ответ