Вконтакте Facebook Twitter Лента RSS

Лабораторная работа: Измерение физических величин. Лабораторная работа: Измерение физических величин Тренировочные задания и вопросы

Цели работы: изучить устройство микроинструментов; освоить методы измерения деталей с помощью микроинструментов.

Теоретические сведения

Метод измерения микрометрическими инструментами прямой, абсолютный. Диапазон измерений обеспечивается измерительным перемещением микрометрического винта и составляет 25 мм (0-25; 25-50; 50-75 и т. д.).

Верхний предел измеряемых величин для каждого типа микрометрического инструмента устанавливается соответствующим стандартом. Все микрометрические инструменты (кроме нутромера микрометрического) имеют трещотку - механизм, обеспечивающий определенное измерительное усилие. Погрешность измерения состоит из погрешности инструмента, погрешности метода измерения и др. Основная погрешность (инструментальная) микрометров обычно не превышает ±5 мкм (±0,005 мм). Под основной погрешностью измерительного средства понимается величина отклонения результата измерения от размера эталона, полученная при поверке инструмента. Величина отсчета инструментов составляет 0,01 мм.

Микрометры общего назначения подразделяются на следующие типы:

МК - микрометры гладкие для измерения наружных размеров изделий;

МЗ - микрометры зубомерные для контроля длины общей нормали зубчатых колес;

МТ - микрометры трубные для измерения толщины стенок труб;

МП - микрометры для проволоки.

Пример условного обозначения гладкого микрометра с диапазоном измерения 25-50 мм 1-го класса точности: Микрометр МК-50-1 ГОСТ 6507-90.

Микрометры со вставками используются для специальных измерений и по ГОСТ 4380 - 86 подразделяются на:

МВМ микрометры со вставками для измерения среднего диаметра метрической и дюймовой резьбы;

МВТ - для измерения среднего диаметра трапецеидальной резьбы;

МВП- с плоскими вставками для измерений деталей из мягких материалов.

Пример условного обозначения резьбового микрометра с диапазоном измерений 0-25 мм: Микрометр МВМ 0-25 ГОСТ 4380-93.

Глубиномеры микрометрические (ГОСТ 7470-92) изготавливаются 1-го и 2-го классов точности с диапазонами измерений 0-100, 0-150 мм.

Диапазоны измерений обеспечиваются набором сменных измерительных стержней (рис. 7). Пример условного обозначения глубиномера микрометрического с диапазоном измерений 0-100 мм: Глубиномер ГМ 100 ГОСТ 7470-92.

Микрометрические нутромеры (ГОСТ 10-88) выпускаются с пределами измерения 0-75; 75-175; 75-600; 150-1250; 600-2500; 1250-4000; 2500-6000 мм. Диапазон измерений достигается за счет сменных удлинительных стержней. Нутромер микрометрический с верхним пределом измерений 175 мм обозначается следующим образом: Нутромер НМ175 ГОСТ 10-88.

На рисунках 7 - 10 показаны микрометрические инструменты.

Микрометрический инструмент выбирают по типу (в зависимости от объекта измерения), по пределам измерения и классу точности в зависимости от размера и допускаемой погрешности измерения по ГОСТ 8.051-81.

Рис. 7. Микрометр зубомерный

Рис. 8. Гладкий микрометр


Рис. 9. Микрометрический глубиномер


Рис. 10. Микрометрический нутромер


Похожая информация:

  1. B) Расчет количества воздуха для проветривания по газовыделению при взрывных работах при проветривании восстающей выработки нагнетательным способом
  2. I. ОБЩИЕ ПОЛОЖЕНИЯ. 1.1. Административный регламент разработан в целях повышения качества предоставления и доступности предоставления государственной услуги "Ежемесячное

Цель работы: научиться измерять размеры тел.

Оборудование: мерная лента, линейка (рис. 53).

Рис. 53

Проверьте себя

Ответьте на вопросы:

  1. Какова цена деления шкалы линейки и мерной ленты?
  2. С какой точностью можно измерить длину этими приборами?

Ход работы:

Рис. 54

  1. Оцените «на глаз» длину столешницы учебного стола. Значение длины занесите в таблицу.
  2. При помощи линейки измерьте наибольшее расстояние (пядь) между кончиками расставленных пальцев (рис. 54) вашей руки - указательного и большого, т. е. измерьте и занесите в таблицу значение вашей пяди.
  3. Измерьте пядями длину столешницы учебного стола и занесите значение длины в таблицу.
  4. Измерьте мерной лентой длину столешницы учебного стола и занесите значение длины в таблицу.
  5. Измерьте линейкой длину столешницы стола и занесите значение длины в таблицу. Сравните значения длины столешницы, полученные в пунктах 1, 3-5. Сделайте выводы.

Контрольные вопросы

  1. Какое измерение длины столешницы учебного стола l1, l2, l3 или l4 наиболее точное? Почему?
  2. Выразите длину столешницы l4 в миллиметрах (мм), дециметрах (дм), метрах (м) и километрах (км).
  3. В каких единицах удобнее всего выражать длину столешницы? Обоснуйте ответ.
  4. Как с помощью линейки определить толщину дна кастрюли (рис. 55)?

Рис. 55


Автор презентации «Измерение размеров малых тел» Помаскин Юрий Иванович - учитель физики, Почетный работник общего образования. Презентация сделана как учебно-наглядное пособие к учебнику «Физика 7» автора А.В. Перышкина. Предназначена для демонстрации на уроках изучения нового материала Используемые источники: 1) А.В.Перышкин «Физика 7», Москва, Дрофа стр)Картинки из Интернета (




Указания к работе 1. Положите вплотную к линейке несколько дробинок в ряд. Пересчитайте их n = 14 штук


Указания к работе 2. Измерьте длину ряда мм n = 14 штук


Указания к работе 3. Вычислите диаметр одной дробинки мм n = 14 штук d = 23 мм 14 = 1,64… мм




Указания к работе Определите способом рядов диаметр молекулы на фото. n = мм d = =1,3 мм 13 мм 10




Указания к работе Увеличение на фотографии равно 70000, значит истинный размер молекулы в раз меньше, чем на фото. 8. Определите истинный размер молекулы d = = 0, ….мм 1,3 мм и


Указания к работе опыта Число частиц в ряду Длина ряда (мм) Размер одной частицы d, мм 1. Дробь 2. Горох 14231,64… 3. Молекула 1013На фотографии Истинный размер 1,30, … 9. Данные опыта занесите в таблицу.

Лабораторная работа №2

Измерение плотности твердых тел пикнометрическим методом

Цель работы : ознакомление с устройством аналитических весов и методами точного взвешивания, определение плотности образцов неправильной формы при помощи метода пикнометра.

КРАТКАЯ ТЕОРИЯ

Плотностью вещества называется величина, равная отношению массы тела m и его объема V :

Иначе говоря, плотность вещества - это масса единицы объема этого вещества. Очевидно, измерение плотности сводится к измерению массы и объема тела.

Масса относится к числу немногих физических величин, значения которых могут быть определены непосредственными измерениями с помощью взвешивания на весах. (Это не относится к очень большим или очень малым массам таким, например, как массы звезд или атомов). Напротив, объем тела определяется обычно путем косвенных измерений. В случае образцов правильной геометрической формы (цилиндры, параллелепипеды) объем находим из измерения линейных размеров, которые, как и массу, можно определить непосредственно с помощью линеек. При определении плотности вещества образцов сложной формы вычислить объем образца через линейные размеры невозможно. В этом случае используют другие методы, среди которых так называемый пикнометрический метод.

Пикнометр (от греческого "пикнос" - плотный) представляет собой сосуд, изготовленный из стекла (вследствие его малой химической активности), объем которого известен с большой точностью. По Госстандарту при объеме пикнометра 100см 3 допустимая погрешность составляет 0,12см 3 , а для пикнометра высшего класса - 0.012 см 3 . Сосуд имеет узкое горло и глухую пробку для уменьшения испарения. Такая конструкция пикнометра позволяет точно заполнить его жидкостью до метки, нанесенной на узком горлышке. Объем жидкости в этом случае и есть обозначенный объем пикнометра.

Пикнометрический метод измерения плотности состоит в следующем:

1. Пикнометр заполняют дистиллированной водой (до метки), закрывают пробкой и взвешивают. Масса пикнометра с водой M 0 , очевидно равна


. (2)

Здесь 0 - плотность воды при температуре опыта, V Р и m Р - объем и масса сосуда.

2. Взвешивают исследуемый образец. Очевидно, что его масса m равна

, (3)

где - искомая плотность образца и V - объем образца.

3 Взвешенный образец погружают в пикнометр с водой. Излишек воды удаляют, чтобы ее уровень снова совпал с меткой на горлышке пикнометра. Определяют массу M пикнометра с водой и образцом.

Вычитая (4) из (2) и прибавляя (3), определяем массу вытесненной воды -
и, определив отсюда объем V , получим выражение для искомой плотности

. (5)

Эта формула используется в работе для вычисления плотности. Однако следует помнить, что получена она при условии точного равенства заполнения пикнометра до и после помещения в него образцов. Оценим погрешность, допускаемую в том случае, когда объемы заполнения до и после погружения образцов в пикнометре отличаются на величину v . Тогда уравнение (4) будет иметь вид

Решая систему уравнений (2), (3), (6), получим для расчета плотности вместо формулы (5) следующее выражение

Расчет плотности по формуле (5) в этом случае привел бы к неверному значению . Нетрудно получить, что

Проведем оценку. При площади сечения горлышка пикнометра 0.5см 2 и несовпадения уровней до и после погружения образцов ~1мм величина v составит около 0,05см 3 , что дает значение v/V (V p = 100см3 ) порядка 0,05%. Объем образцов V выбирается так, чтобы V/V p 1/3 . Таким образом, получаем, что несовпадение объема заполнения пикнометра до и после погружения образцов может привести к ошибке около (0,1-0,2)% от истинного значения плотности.

В дальнейшем для определения будет использоваться формула (5). Из нее видно, что пикнометрический способ предполагает возможно более точное измерение масс M , m и M 0 . В данной работе для этой цели используются аналитические весы АДВ-200.

МЕТОДИКА ЭКСПЕРИМЕНТА

Измерение массы выполняется путем точного взвешивания на аналитических весах. Такие весы отличаются высокой чувствительностью, которая достигается тщательным изготовлением деталей, применением высококачественных материалов, некоторыми особыми вспомогательными устройствами. Подобно другим лабораторным весам, аналитические весы - это равноплечные весы с коромыслом. В середине коромысла укреплена агатовая призма, которая своим ребром опирается на агатовую подушку. На равных расстояниях от нее расположены еще две призмы, на которые с помощью сережек подвешены грузоприемные чашки.

Для предохранения ребер агатовых призм от быстрого изнашивания весы снабжены арретиром - приспособлением, позволяющим приподнимать вверх коромысло с чашками и выводить их тем самым из соприкосновения с подушками, на которые опираются призмы. Когда весами не пользуются и при изменении нагрузки во время взвешивания весы обязательно должны быть арретированы .

Абривеатура АДВ-200, что означает аналитические демпферные весы с предельной нагрузкой 200 г. Слово "демпферные" означает, что весы снабжены специальным устройством, так называемым "демпфером", обеспечивающим быстрое затухание колебаний коромысла, возникающих после освобождения (разарретирования) весов. Демпфер состоит из двух легких металлических стаканов, два из которых укреплены неподвижно на колонке весов, а два других подвешены к коромыслу. При движении коромысла прикрепленные к нему стаканы движутся внутри неподвижных стаканов. Сжатие воздуха в стаканах, создает тормозящее усилие, приводящее к уменьшению времени движения коромысла.

В
есы заключены в остеклованный футляр. На основании весов (см. рис.1) установлена колонка 1 , на ней помещается подушка для средней призмы коромысла. На концах коромысла навешаны серьги, на которых висят стаканы демпферов 2 и грузоприемные чашки. Под основанием весов смонтировано арретирующее устройство, приводимое в действие маховичком 3 . Весы снабжены световым экраном 4 , на который проецируется микрошкала, укрепленная на нижнем конце стрелки, жестко связанной с коромыслом. Освещение шкалы включается при разарретировании весов маховичком 3 .

Взвешиваемые образцы всегда располагают на левой чашке. Гири массой 1 грамм и выше помещают на правую чашку. Гири малой массы (от 0,01 г до 0,99 г) накладывают с помощью специального механизма, расположенного на правой стороне корпуса весов. Он состоит из двух дисков 5 и 6 на общей оси, поворотами которых на рейку, скрепленную с коромыслом, накладываются или снимаются концевые гири. Диски вращаются независимо друг от друга. Поворачивая малый диск 5 , можно изменять массу гирь от 0,01 до 0,09 г. Поворот большого диска обеспечивает изменение массы от 0,1 до 0,9 г. Суммарный вес наложенных гирь отсчитывается по цифрам, которые отсчитываются против риски.

Для более точного взвешивания необходимо использовать световую шкалу, но для этого ее надо предварительно проградуировать. Вначале определяют нулевую точку, т.е. то деление шкалы, против которого останавливается стрелка ненагруженных весов. Чтобы ее найти, надо поворотом маховичка 3 реарретировать весы и, дождавшись их успокоения, отсчитать деление шкалы n 0 , на котором остановился световой зайчик. Если n 0 отличается от нулевого деления шкалы на 2 - 5 делений, то их можно совместить ручкой, находящейся справа сверху от маховичка 3 .

Далее на правую чашку накладывается гирька массой 10 мг (это можно сделать, поворачивая диск 5 ), весы разарретируются и после их успокоения отсчитывается по шкале положение равновесия n . Теперь можно определить чувствительность весов и цену деления .

Взвешивание производится следующим образом. Груз неизвестной массы M размещают в середине левой чашки, а на правую, по возможности ближе к центру, помещают гири. Пока весы мало уравновешены, не следует освобождать коромысло полностью, его освобождают лишь настолько, чтобы можно было судить, которая из чашек легче, замечая, куда отклонится стрелка; после этого сразу же арретируют весы и прибавляют или убавляют разновески. Таким образом, можно определить массу груза M с точностью до массы минимального используемого разновеса, т.е. определить, что M лежит в диапазоне A , где A масса гирь на правой чашке, а m - масса минимального разновеса. Обычно массу минимального разновеса, помещаемого на правую чашку, берут равной . Более точное уравновешивание производят с помощью устройства для наложения кольцевых разновесов, используя лимбы 5 и 6 . При этом следует добиться, чтобы зайчик осветителя установился в пределах световой шкалы как можно ближе к нулевой точке.

Масса груза подсчитывается так. Пусть масса разновеса на правой чашке равна A , цифра против риски на внешнем диске равна B , а на внутреннем C . При этом зайчик осветителя установился на делении шкалы с номером D . Очевидно, что

Полученный результат отягощен систематическими погрешностями, имеющими разное происхождение. За погрешность, обусловленную самими весами, можно принять цену деления шкалы, т.е. С M= . Однако, результат также отягощен погрешностью, связанной с погрешностью разновесов. Для оценки погрешности M , возникающей по этой причине, применяют более сложную процедуру.

Погрешность суммарной массы гирь, уравновешивающих образец, складывается из погрешности отдельных разновесов, имеющих систематический характер. Допустимые пределы этих погрешностей хотя и задаются (для новых разновесов), но точные значения абсолютных погрешностей, лежащих внутри этих пределов, неизвестны. Эти погрешности могут иметь любой знак, так что при взвешивании с использованием нескольких разновесов эти погрешности должны суммироваться алгебраически. Общая абсолютная погрешность при этом может оказаться как больше, так и меньше погрешности отдельного разновеса. Очевидно, что отклонение суммарной номинальной массы гирь от истинного значения их массы в значительной степени неопределенно. Значит, если провести взвешивание другим набором разновесов, то полученное значение массы образца может оказаться другим.

Таким образом, взвешивание с использованием различных наборов разновесов создает условие случайности в процессе проведения эксперимента. Значит, появляется возможность применения способов обработки случайных измерений к полученному набору данных. Другими словами погрешность M , связанную с систематическими погрешностями разновесов, можно определить по формулам расчета случайных погрешностей. Такая процедура искусственного создания случайных условий называется рандомизацией.

Наконец, результат взвешивания отягощен еще одной погрешностью, которая возникает, потому что взвешивание производится в воздухе. Дело в том, что при взвешивании определяется, в общем-то, не масса образца, а сила, действующая со стороны образца на коромысло весов (точнее, момент этой силы). Эта сила зависит от того, в какой среде находится образец, так как на тело, кроме силы тяжести, действует еще и выталкивающая сила Архимеда. Однако, возникающую в силу этого погрешность можно исключить, введя поправку на кажущуюся потерю веса тела в воздухе (в воде). Такую поправку можно ввести для каждого результата взвешивания, необходимого для определения , и уже поправленные значения М, М 0 и m подставить в формулу (5) и получить поправленное значение плотности образца. Но поправленное значение можно определить и другим способом.

Непоправленная плотность, как говорилось выше, определяется по формуле (5). Введем обозначения: 1 - истинная плотность образца, a - плотность воздуха, b - плотность разновесов материала. Тогда 1 V будет истинная масса кусочков испытуемого тела, 0 V - истинная масса вытесненной ими воды, a V - масса воздуха, вытесненного кусочками и, m ( a / b ) - масса воздуха, вытесненного разновесами, уравновешивающими кусочки, а (M 0 -M-m)( a / b ) - масса воздуха, вытесненного разновесами, уравновешивающими вытесненную воду.

Тогда

Аналогично для воды имеем

Деля эти равенства почленно, получаем

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ И УСЛОВИЯ ЭКСПЕРИМЕНТА

1. Определить нулевую точку весов и цену деления световой шкалы.

2. Взвесить пикнометр с водой. Взвешивание произвести не менее 5 раз, используя различные наборы разновесов. Найти средние, случайные и систематические погрешности величины M 0 .

3. Взвесить исследуемые образцы. Их объем должен составлять примерно треть объема пикнометра. Далее проделать все как в пункте 2.

4. Высыпать образцы в пикнометр. Отобрать излишек воды (шприцем или фильтровальной бумагой). При этом следует обратить внимание на то, чтобы на кусочках не оставались пузырьки воздуха. Определить массу M пикнометра с остатками воды и образцами. Далее все как в пункте 2.

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

После выполнения всех взвешиваний в нашем распоряжении имеется набор средних значенийM 0 , M, m , а также их систематические и случайные погрешности. По средним величинам рассчитывается неисправленное значение плотности по формуле (5) и исправленное с учетом выталкивающей силы значение плотности 1 по формуле (9). Величины 0 и а берутся из таблиц и в дальнейшем их можно считать известными точно.

Значение является результатом косвенных измерений, т.е. погрешность этой величины определяется по формуле (считаем, что  0 = 0 )

Проведя дифференцирование, получаем

Подставляя сюда случайные погрешности m , M , M получаем погрешность , обусловленную случайными погрешностями (точнее, учитывая рандомизацию погрешности разновесов). Если в (10) подставить систематические погрешности, то получим погрешность с , обусловленную систематическими погрешностями прямых

Цели работы: изучить устройство микроинструментов; освоить методы измерения деталей с помощью микроинструментов.

Теоретические сведения

Метод измерения деталей с помощью микрометрических инструментов - абсолютный. Верхний предел измеряемых величин для каждого типа микрометрического инструмента устанавливается соответствующим государственным стандартом. Все микрометрические инструменты (кроме микрометрического нутромера) имеют трещотку – механизм, обеспечивающий определенное измерительное усилие. Погрешность измерения состоит из погрешности инструмента, погрешности метода измерения и др. Основная погрешность (инструментальная) микрометров обычно не превышает ±5 мкм (±0,005 мм). Под ней понимается величина отклонения результата измерения от эталона, полученная при поверке инструмента.

Микрометры общего назначения (ГОСТ 6507-90 « Микрометры. Техни-ческие условия») подразделяются на следующие типы:

МК – гладкие (для установления наружных размеров изделий);

МЗ – зубомерные (для контроля длины общей нормали зубчатых колес);

МТ – трубные (для измерения толщины стенок труб);

МП – проволочные (для измерения проволоки).

Пример условного обозначения гладкого микрометра 1-го класса точности с диапазоном измерения 25-50 мм: микрометр МК-50-1 ГОСТ 6507-90 .

Микрометры со вставками используются для специальных измерений и по ГОСТ 4380-86 «Микрометры со вставками. Технические условия» подраз-деляются на:

МВМ – для измерения среднего диаметра метрической и дюймовой резьбы;

МВТ – для измерения среднего диаметра трапецеидальной резьбы;

МВП– с плоскими вставками (для измерения деталей из мягких материалов).

Пример условного обозначения резьбового микрометра с диапазоном измерений 0-25 мм: микрометр МВМ 0-25 ГОСТ 4380-93.

Микрометрические глубиномеры (ГОСТ 7470-92 «Глубиномеры микрометрические. Технические условия») изготавливаются 1-го и 2-го классов точности с диапазонами измерений 0-100, 0-150 мм.

Диапазоны измерений обеспечиваются набором сменных измерительных стержней. Пример условного обозначения микрометрического глубиномера с диапазоном измерений 0-100 мм: глубиномер ГМ 100 ГОСТ 7470-92.

Микрометрические нутромеры (ГОСТ 10-88 «Нутромеры микро-метрические. Технические условия») выпускаются с пределами измерения 0-75; 75-175; 75-600; 150-1250; 600-2500; 1250-4000; 2500-6000 мм. Диапазон измерений достигается за счет сменных удлинительных стержней. Микрометрический нутромер с верхним пределом измерений 175 мм обозначается следующим образом: нутромер НМ175 ГОСТ 10-88.

На рис.8 – 11 показаны микрометрические инструменты. Их выбирают по типу объекта измерения, пределам измерения и классу точности, в зависимости от размера и допускаемой погрешности измерения по ГОСТ 8.051-81.

Гладкие микрометры

Рисунок 8 – Гладкий микрометр

Рисунок 9 – Микрометрический глубиномер


Рисунок 10– Микрометр зубомерный


Рисунок 11– Микрометрический нутромер

Устройство микрометрических инструментов и работа с ними

Общими элементами микрометрических инструментов являются следу-ющие: стебель с линейной шкалой, микрометрический винт с трещоткой и стопорным устройством, барабан с круговой шкалой (Рисунок 8).

Цена деления круговой шкалы определяется отношением шага резьбы микрометрического винта (0,5 мм) к числу делений (50) и равна 0,01 мм. Цена деления и диапазон измерений указываются на лицевой стороне инструмента.

Перед началом измерений микрометром типа МК с пределом измерения до 25 мм требуется проверить установку его в нулевое положение. Для этого необходимо выполнить следующие действия: сначала протереть бумагой или мягкой тканью измерительные поверхности «пятки» и микровинта; затем, вращая микрометрический винт с помощью трещотки, добиться соприкосновения измерительных поверхностей. При этом скошенный край барабана должен установиться так, чтобы был виден нулевой штрих продольной (миллиметровой) шкалы, а нулевое деление круговой шкалы расположилось бы напротив продольного штриха стебля. Если такое расположение штрихов не соблюдается, то микрометрический инструмент нужно настроить (установить его на нуль). В противном случае его показания будут неверны.

Гладкие микрометры с диапазоном измерений 25-50, 50-75, 75-100 мм и др. настраиваются на нуль аналогично, но при этом используется установочная мера, равная нижнему пределу измерения микрометра: 25, 50, 75 мм и др. соответственно. После соприкосновения измерительных поверхностей микрометра с установочной мерой нулевой штрих круговой шкалы барабана должен совпасть с продольным штрихом стебля. Установочные меры поставляются в комплекте с микрометрами.

Микрометрический глубиномер с диапазоном измерений 0-25 мм устанавливается на нуль с использованием поверочной плиты. Барабан глубиномера вывертывается до полного утопления измерительного стержня микровинта в отверстии основания. Затем основание инструмента плотно прижимается к плите и вращением за трещотку микровинт возвращается до соприкосновения измерительной поверхности стержня с поверхностью плиты. Стопор фиксирует положение микровинта. Это и есть нулевое положение, при котором штрих нулевого деления круговой шкалы барабана должен быть расположен против продольного штриха стебля. В противном случае глубиномер необходимо установить на нуль. Последовательность действий при этом аналогична настройке гладкого микрометра.

Порядок настройки глубиномеров с большими значениями измеряемой величины (пределами измерений: 50-75; 75-100 мм) не отличается от порядка настройки глубиномера с пределом измерения 0-25 мм. Его можно увеличить применяя сменные (дополнительные) измерительные стержни.

Особенность установки на нуль резьбового микрометра с пределами измерения 25-50 мм заключается в том, что она проводится с использованием специальной меры и в ходе изменения положения «пятки» инструмента относительно микровинта.

Микрометрический нутромер установить на нуль можно с помощью концевых мер длины или специальной скобы, прилагаемой к инструменту (Рисунок 11). На головку нутромера навинчивается такой удлинитель, чтобы длина нутромера соответствовала размеру скобы.

Нутромер нужно поместить между измерительными поверхностями скобы и, вращая барабан, добиться соприкосновения измерительных поверхностей с поверхностями скобы. Далее застопорить микровинт, проверить, появился ли нуль продольной шкалы и совпал ли нулевой штрих круговой шкалы с продольным штрихом стебля. В противном случае установка на нуль проводится так же, как и для гладкого микрометра.

После настройки микрометрического инструмента на нуль можно проводить измерения (Рисунок 12).

Рисунок 12 – Отсчетное устройство микрометрических инструменто

В целях упрощения работы необходимо использовать стойки, штативы и другие приспособления для крепления измерительных инструментов и деталей. Во время измерений относительные перекосы измерительных поверхностей должны быть исключены. Их совмещение осуществляется в ходе аккуратного вращения микровинта за трещотку (до трех щелчков). Вращение за барабан противопоказано во избежание сбоя настройки (кроме микрометрического нутромера, который не имеет трещотки). При определении размеров заданной цилиндрической поверхности измерение ведется в трех сечениях и в каждом сечении в двух взаимно перпендикулярных направлениях.

Ход работы

Оборудование и приборы: гладкие микрометры; зубомерные микрометры; микрометрические нутромеры; микрометрические глубиномеры; детали.

1) Изучить устройство микроинструментов (рисунок 8 – 11). Ознакомиться с измеряемыми деталями. Для каждой детали вычертить эскиз.

Внести основные параметры микроинструментов в таблицу 5.

2) Провести измерения.

3) Проверить гипотезу о принадлежности результатов наблюдений нормальному распределению (построение гистограммы, определение эмпирического распределения) по схеме, изложенной ниже.

Таблица 5 – Средства измерения – микроинструменты

© 2024 Сайт по саморазвитию. Вопрос-ответ