Вконтакте Facebook Twitter Лента RSS

Типичные реакции солей. Соли: классификация и химические свойства

Разделение оснований на группы по различным признакам представлено в таблице 11.

Таблица 11
Классификация оснований

Все основания, кроме раствора аммиака в воде, представляют собой твёрдые вещества, имеющие различную окраску. Например, гидроксид кальция Са(ОН) 2 белого цвета, гидроксид меди (II) Сu(ОН) 2 голубого цвета, гидроксид никеля (II) Ni(OH) 2 зелёного цвета, гидроксид железа (III) Fe(OH) 3 красно-бурого цвета и т. д.

Водный раствор аммиака NH 3 Н 2 O, в отличие от других оснований, содержит не катионы металла, а сложный однозарядный катион аммония NH - 4 и существует только в растворе (этот раствор вам известен под названием нашатырного спирта). Он легко разлагается на аммиак и воду:

Однако, какими бы разными ни были основания, все они состоят из ионов металла и гидроксогрупп, число которых равно степени окисления металла.

Все основания, и в первую очередь щёлочи (сильные электролиты), образуют при диссоциации гидроксид-ионы ОН - , которые и обусловливают ряд общих свойств: мылкость на ощупь, изменение окраски индикаторов (лакмуса, метилового оранжевого и фенолфталеина), взаимодействие с другими веществами.

Типичные реакции оснований

Первая реакция (универсальная) была рассмотрена в § 38.

Лабораторный опыт № 23
Взаимодействие щелочей с кислотами

    Запишите два молекулярных уравнения реакций, сущность которых выражается следующим ионным уравнением:

    H + + ОН - = Н 2 O.

    Проведите реакции, уравнения которых вы составили. Вспомните, какие вещества (кроме кислоты и щёлочи) необходимы для наблюдения за этими химическими реакциями.

Вторая реакция протекает между щелочами и оксидами неметаллов, которым соответствуют кислоты, например,

Соответствует

и т.д.

При взаимодействии оксидов с основаниями образуются соли соответствующих кислот и вода:


Рис. 141.
Взаимодействие щёлочи с оксидом неметалла

Лабораторный опыт № 24
Взаимодействие щелочей с оксидами неметаллов

Повторите опыт, который вы проделывали раньше. В пробирку налейте 2-3 мл прозрачного раствора известковой воды.

Поместите в неё соломинку для сока, которая выполняет роль газоотводной трубки. Осторожно пропускайте через раствор выдыхаемый воздух. Что наблюдаете?

Запишите молекулярное и ионное уравнения реакции.

Рис. 142.
Взаимодействие щелочей с солями:
а - с образованием осадка; б - с образованием газа

Третья реакция является типичной реакцией ионного обмена и протекает только в том случае, если в результате образуется осадок или выделяется газ, например:

Лабораторный опыт № 25
Взаимодействие щелочей с солями

    В трёх пробирках слейте попарно по 1-2 мл растворов веществ: 1-я пробирка - гидроксида натрия и хлорида аммония; 2-я пробирка - гидроксида калия и сульфата железа (III); 3-я пробирка - гидроксида натрия и хлорида бария.

    Нагрейте содержимое 1-й пробирки и определите по запаху один из продуктов реакции.

    Сформулируйте вывод о возможности взаимодействия щелочей с солями.

Нерастворимые основания разлагаются при нагревании на оксид металла и воду, что нехарактерно для щелочей, например:

Fe(OH) 2 = FeO + Н 2 O.

Лабораторный опыт № 26
Получение и свойства нерастворимых оснований

В две пробирки налейте по 1 мл раствора сульфата или хлорида меди (II). В каждую пробирку добавьте по 3-4 капли раствора гидроксида натрия. Опишите образовавшийся гидроксид меди (II).

Примечание . Оставьте пробирки с полученным гидроксидом меди (II) для проведения следующих опытов.

Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции».

Добавьте в одну из пробирок с полученным в предыдущем опыте гидроксидом меди (II) 1-2 мл соляной кислоты. Что наблюдаете?

Используя пипетку, поместите 1-2 капли полученного раствора на стеклянную или фарфоровую пластину и, используя тигельные щипцы, осторожно выпарьте его. Рассмотрите образующиеся кристаллы. Отметьте их цвет.

Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции», «участие катализатора» и «обратимость химической реакции».

Нагрейте одну из пробирок с полученным ранее или выданным учителем гидроксидом меди () (рис. 143). Что наблюдаете?

Рис. 143.
Разложение гидроксида меди (II) при нагревании

Составьте уравнение проведённой реакции, укажите условие её протекания и тип реакции по признакам «число и состав исходных веществ и продуктов реакции», «выделение или поглощение теплоты» и «обратимость химической реакции».

Ключевые слова и словосочетания

  1. Классификация оснований.
  2. Типичные свойства оснований: взаимодействие их с кислотами, оксидами неметаллов, солями.
  3. Типичное свойство нерастворимых оснований: разложение при нагревании.
  4. Условия протекания типичных реакций оснований.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания


Химические свойства средних солей

Взаимодействие средних солей с металлами

Реакция соли с металлом протекает в том случае, если исходный свободный металл более активен, чем тот, который входит в состав исходной соли. Узнать о том, какой металл более активен, можно, воспользовавшись электрохимическим рядом напряжений металлов.

Так, например, железо взаимодействует с сульфатом меди в водном растворе, поскольку является более активным, чем медь (левее в ряду активности):

В то же время железо не реагирует с раствором хлорида цинка, поскольку оно менее активно, чем цинк:

Следует отметить, что такие активные металлы, как щелочные и щелочноземельные, при их добавлении к водным растворам солей будут прежде всего реагировать не с солью, а входящей в состав растворов водой.

Взаимодействие средних солей с гидроксидами металлов

Оговоримся, что под гидроксидами металлов в данном случае понимаются соединения вида Me(OH) x .

Для того чтобы средняя соль реагировала с гидроксидом металла, должны одновременно (!) выполняться два требования:

  • в предполагаемых продуктах должен быть обнаружен осадок или газ;
  • исходная соль и исходный гидроксид металла должны быть растворимы.

Рассмотрим пару случаев, для того чтобы усвоить данное правило.

Определим, какие из реакций ниже протекают, и напишем уравнения протекающих реакций:

  • 1) PbS + KOH
  • 2) FeCl 3 + NaOH

Рассмотрим первое взаимодействие сульфида свинца и гидроксида калия. Запишем предполагаемую реакцию ионного обмена и пометим ее слева и справа «шторками», обозначив таким образом, что пока не известно, протекает ли реакция на самом деле:

В предполагаемых продуктах мы видим гидроксид свинца (II), который, судя по таблице растворимости, нерастворим и должен выпадать в осадок. Однако, вывод о том, что реакция протекает, пока сделать нельзя, так как мы не проверили удовлетворение еще одного обязательного требования – растворимости исходных соли и гидроксида. Сульфид свинца – нерастворимая соль, а значит реакция не протекает, так как не выполняется одно из обязательных требований для протекания реакции между солью и гидроксидом металла. Т.е.:

Рассмотрим второе предполагаемое взаимодействие между хлоридом железа (III) и гидроксидом калия. Запишем предполагаемую реакцию ионного обмена и пометим ее слева и справа «шторками», как и в первом случае:

В предполагаемых продуктах мы видим гидроксид железа (III), который нерастворим и должен выпадать в осадок. Однако сделать вывод о протекании реакции пока еще нельзя. Для этого надо еще убедиться в растворимости исходных соли и гидроксида. Оба исходных вещества растворимы, значит мы можем сделать вывод о том, что реакция протекает. Запишем ее уравнение:

Реакции средних солей с кислотами

Средняя соль реагирует с кислотой в том случае, если образуется осадок или слабая кислота.

Распознать осадок среди предполагаемых продуктов практически всегда можно по таблице растворимости. Так, например, серная кислота реагирует с нитратом бария, поскольку в осадок выпадает нерастворимый сульфат бария:

Распознать слабую кислоту по таблице растворимости нельзя, поскольку многие слабые кислоты растворимы в воде. Поэтому список слабых кислот следует выучить. К слабым кислотам относят H 2 S, H 2 CO 3 , H 2 SO 3 , HF, HNO 2 , H 2 SiO 3 и все органические кислоты.

Так, например, соляная кислота реагирует с ацетатом натрия, поскольку образуется слабая органическая кислота (уксусная):

Следует отметить, что сероводород H 2 S является не только слабой кислотой, но и плохо растворим в воде, в связи с чем выделяется из нее в виде газа (с запахом тухлых яиц):

Кроме того, обязательно следует запомнить, что слабые кислоты — угольная и сернистая — являются неустойчивыми и практически сразу же после образования разлагаются на соответствующий кислотный оксид и воду:

Выше было сказано, что реакция соли с кислотой идет в том случае, если образуется осадок или слабая кислота. Т.е. если нет осадка и в предполагаемых продуктах присутствует сильная кислота, то реакция не пойдет. Однако есть случай, формально не попадающий под это правило, когда концентрированная серная кислота вытесняет хлороводород при действии на твердые хлориды:

Однако, если брать не концентрированную серную кислоту и твердый хлорид натрия, а растворы этих веществ, то реакция действительно не пойдет:

Реакции средних солей с другими средними солями

Реакция между средними солями протекает в том случае, если одновременно (!) выполняются два требования:

  • исходные соли растворимы;
  • в предполагаемых продуктах есть осадок или газ.

Например, сульфат бария не реагирует с карбонатом калия, поскольку несмотря на то что в предполагаемых продуктах есть осадок (карбонат бария), не выполняется требование растворимости исходных солей.

В то же время хлорид бария реагирует с карбонатом калия в растворе, поскольку обе исходные соли растворимы, а в продуктах есть осадок:

Газ при взаимодействии солей образуется в единственном случае – если смешивать при нагревании раствор любого нитрита с раствором любой соли аммония:

Причина образования газа (азота) заключается в том, что в растворе одновременно находятся катионы NH 4 + и анионы NO 2 — , образующие термически неустойчивый нитрит аммония, разлагающийся в соответствии с уравнением:

Реакции термического разложения солей

Разложение карбонатов

Все нерастворимые карбонаты, а также карбонаты лития и аммония термически неустойчивы и разлагаются при нагревании. Карбонаты металлов разлагаются до оксида металла и углекислого газа:

а карбонат аммония дает три продукта – аммиак, углекислый газ и воду:

Разложение нитратов

Абсолютно все нитраты разлагаются при нагревании, при этом тип разложения зависит от положения металла в ряду активности. Схема разложения нитратов металлов представлена на следующей иллюстрации:

Так, например, в соответствии с этой схемой уравнения разложения нитрата натрия, нитрата алюминия и нитрата ртути записываются следующим образом:

Также следует отметить специфику разложения нитрата аммония:

Разложение солей аммония

Термическое разложение солей аммония чаще всего сопровождается образованием аммиака:

В случае, если кислотный остаток обладает окислительными свойствами, вместо аммиака образуется какой-либо продукт его окисления, например, молекулярный азот N 2 или оксид азота (I):

Химические свойства кислых солей

Отношение кислых солей к щелочам и кислотам

Кислые соли реагируют с щелочами. При этом, если щелочь содержит тот же металл, что и кислая соль, то образуются средние соли:

Также, если в кислотном остатке кислой соли осталось два или более подвижных атомов водорода, как, например, в дигидрофосфате натрия, то возможно образование как средней:

так и другой кислой соли с меньшим числом атомов водорода в кислотном остатке:

Важно отметить, что кислые соли реагируют с любыми щелочами, в том числе и теми, которые образованы другим металлом. Например:

Кислые соли, образованные слабыми кислотами, реагируют с сильными кислотами аналогично соответствующим средним солям:

Термическое разложение кислых солей

Все кислые соли при нагревании разлагаются. В рамках программы ЕГЭ по химии из реакций разложения кислых солей следует усвоить, как разлагаются гидрокарбонаты. Гидрокарбонаты металлов разлагаются уже при температуре более 60 о С. При этом образуются карбонат металла, углекислый газ и вода:

Последние две реакции являются основной причиной образования накипи на поверхности водонагревательных элементов в электрических чайниках, стиральных машинах и т.д.
Гидрокарбонат аммония разлагается без твердого остатка с образованием двух газов и паров воды:

Химические свойства основных солей

Основные соли всегда реагируют со всеми сильными кислотами. При этом могут образоваться средние соли, если использовались кислота с тем же кислотным остатком, что и в основной соли, или смешанные соли, если кислотный остаток в основной соли отличается от кислотного остатка реагирующей с ней кислоты:

Также для основных солей характерны реакции разложения при нагревании, например:

Химические свойства комплексных солей (на примере соединений алюминия и цинка)

В рамках программы ЕГЭ по химии следует усвоить химические свойства таких комплексных соединений алюминия и цинка, как тетрагидроксоалюминаты и третрагидроксоцинкаты.

Тетрагидроксоалюминатами и тетрагидроксоцинкатами называют соли, анионы которых имеют формулы — и 2- соответственно. Рассмотрим химические свойства таких соединений на примере солей натрия:

Данные соединения, как и другие растворимые комплексные, хорошо диссоциируют, при этом практически все комплексные ионы (в квадратных скобках) остаются целыми и не диссоциируют дальше:

Действие избытка сильной кислоты на данные соединения приводит к образованию двух солей:

При действии же на них недостатка сильных кислот в новую соль переходит только активный металл. Алюминий и цинк в составе гидроксидов выпадают в осадок:

Осаждение гидроксидов алюминия и цинка сильными кислотами не является удачным выбором, поскольку сложно добавить строго необходимое для этого количество сильной кислоты, не растворив при этом часть осадка. По этой причине для этого используют углекислый газ, обладающий очень слабыми кислотными свойствами и благодаря этому не способный растворить осадок гидроксида:

В случае тетрагидроксоалюмината осаждение гидроксида также можно проводить, используя диоксид серы и сероводород:

В случае тетрагидроксоцинката осаждение сероводородом невозможно, поскольку в осадок вместо гидроксида цинка выпадает его сульфид:

При упаривании растворов тетрагидроксоцинката и тетрагидроксоалюмината с последующим прокаливанием данные соединения переходят соответственно в цинкат и алюминат.

Из всех неорганических соединений соли являются наиболее многочисленным классом веществ. Это твёрдые вещества, они отличаются друг от друга по цвету и растворимости в воде.

В начале XIX в. шведский химик Й. Берцелиус сформулировал определение солей как продуктов реакций кислот с основаниями, или соединений, полученных заменой атомов водорода в кислоте металлом. По этому признаку различают соли средние, кислые и основные.

Именно с этими солями вы уже знакомы и знаете их номенклатуру. Например:

    Na 2 CO 3 - карбонат натрия,

    A1(NO 3) 3 - нитрат алюминия,

    CuSO 4 - сульфат меди (II) и т. д.

Диссоциируют такие соли на катионы металла и анионы кислотного остатка:

К кислым солям относят, например, питьевую соду NaHCO 3 , состоящую из катиона металла Na + и кислотного однозарядного остатка НСО 3 - . Для аналогичной кислой соли кальция формулу записывают так: Са(НСO 3) 2 .

Названия этих солей складывают из названий средних солей с прибавлением слова гидро-, например: Mg(HSO 4) 2 - гидросульфат магния.

Диссоциируют кислые соли следующим образом:

Например, к таким солям относится знаменитый малахит (СuOН) 2 СO 3 , о котором вы читали в сказах П. Бажова. Он состоит из двух гидроксокатионов СuОН + и двухзарядного аниона кислотного остатка .

Катион СuОН + имеет заряд 1+, поэтому в молекуле два таких катиона и один двухзарядный анион объединены в электронейтральную соль.

Названия таких солей будут такими же, как и у средних солей, но с прибавлением слова гидроксо-, например (СuOН) 2 СO 3 - гидроксокарбонат меди (II) или АlOНСl 2 - гидроксохлорид алюминия. Подавляющее большинство основных солей нерастворимы или малорастворимы. Последние диссоциируют так:

Аl0НСl 2 = АlOН 2+ + 2Сl - .

Типичные реакции средних солей

Первые две реакции обмена уже были подробно рассмотрены в § 38 и 39.

Лабораторный опыт № 31
Взаимодействие солей с кислотами

В трёх пробирках слейте попарно по 1-2 мл растворов:

    1-я пробирка - силиката натрия и серной кислоты;

    2-я пробирка - карбоната натрия и азотной кислоты;

    3-я пробирка - нитрата натрия и серной кислоты.

Ответьте на вопрос: при каких условиях соли взаимодействуют с кислотами?

Лабораторный опыт № 32
Взаимодействие солей с щелочами

В трёх пробирках слейте попарно по 1-2 мл растворов веществ:

    1-я пробирка - сульфата железа (III) и гидроксида натрия;

    2-я пробирка - сульфата аммония и гидроксида калия;

    3-я пробирка - нитрата бария и гидроксида калия.

Немного нагрейте содержимое 2-й пробирки и определите по запаху один из продуктов реакции.

Ответьте на вопрос: при каких условиях соли взаимодействуют с щелочами?

Третья реакция также является реакцией обмена. Она протекает между растворами солей и сопровождается образованием осадка, например:

Лабораторный опыт № 33
Взаимодействие солей с солями

Проведите качественные реакции, подтверждающие состав хлорида железа (III), используя в качестве реактивов только соли.

Составьте молекулярные и ионные уравнения проведённых реакций.

Четвёртая реакция солей связана с именем крупнейшего русского химика Н. Н. Бекетова, который в 1865 г. изучал способность металлов вытеснять из растворов солей другие металлы. Например, медь из растворов её солей можно вытеснить такими металлами, как магний Mg, алюминий Аl, цинк Zn, и некоторыми другими. А вот ртутью Hg, серебром Ag, золотом Аu медь не вытесняется, и поэтому эти металлы в ряду напряжений расположены правее, чем медь. Зато медь вытесняет их из растворов солей:

Н. Н. Бекетов, действуя газообразным водородом под давлением на растворы солей ртути и серебра, установил, что при этом водород, так же как и некоторые другие металлы, вытесняет ртуть и серебро из их солей.

Располагая металлы, а также водород по их способности вытеснять друг друга из растворов солей, Н. Н. Бекетов составил ряд, который он назвал вытеснительным рядом металлов. Позднее (1892 г., В. Нернст) было доказано, что вытеснительный ряд Н. Н. Бекетова практически совпадает с рядом, в котором металлы и водород расположены (слева направо) в порядке уменьшения их восстановительной способности (см. § 43) при t = 25 °С, р = 101,3 кПа (1 атм) и молярной концентрации ионов металла, равной 1 моль/л. Этот ряд называют электрохимическим рядом напряжений металлов. Вы уже знакомились с этим рядом, когда рассматривали взаимодействие кислот с металлами (§ 37 и 38) и выяснили, что с растворами кислот взаимодействуют металлы, которые расположены левее водорода. Это первое правило ряда напряжений (активности). Оно выполняется с соблюдением некоторых условий, о которых мы говорили ранее.

Второе правило ряда напряжений заключается в следующем: каждый металл вытесняет из растворов солей все другие металлы, расположенные правее его в ряду напряжений. Это правило также соблюдается при выполнении условий:

    а) обе соли (и реагирующая, и образующаяся в результате реакции) должны быть растворимыми;

    б) металлы не должны взаимодействовать с водой, поэтому металлы главных подгрупп I и II групп Периодической системы Д. И. Менделеева - щелочные и щёлочноземельные - не вытесняют другие металлы из растворов солей.

Лабораторный опыт № 34
Взаимодействие растворов солей с металлами

Возьмите три пробирки. В 1-ю пробирку поместите кусочек железной проволоки (скрепку), во 2-ю - свинцовую пластину, а в 3-ю - медную проволоку.

Налейте в 1-ю и во 2-ю пробирки по 2-3 мл раствора сульфата меди (II), а в 3-ю - раствор сульфата железа (II).

Через 5 мин извлеките с помощью пинцета металлические предметы из растворов и рассмотрите их.

Составьте уравнения реакций в молекулярной и ионной формах.

Сделайте вывод о том, в какой из пробирок произошла химическая реакция.

Сделайте вывод об условиях, при которых растворы солей взаимодействуют с металлами.

Ключевые слова и словосочетания

  1. Соли средние, кислые и основные.
  2. Диссоциация различных групп солей.
  3. Типичные свойства средних солей: взаимодействие их с кислотами, щелочами, другими солями и металлами.
  4. Два правила рада напряжений (активности) металлов.
  5. Условия протекания реакций солей с металлами.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания


>> Химия: Соли, их классификация и свойства

Из всех химических соединений соли являются наиболее многочисленным классом веществ. Это твердые вещества, они отличаются друг от друга по цвету и растворимости в воде.

Соли - это класс химических соединений, состоящих из ионов металла и ионов кислотного остатка.

В начале XIX в. шведский химик И. Верцелиус сформулировал определение солей как продуктов реакций кислот с основаниями, или соединений, полученных заменой атомов водорода в кислоте металлом . По этому признаку различают соли средние, кислые и основные.

Средние, или нормальные, - это продукты полного замещения атомов водорода в кислоте на металл.

Именно с этими солями вы уже знакомы и знаете их номенклатуру. Например:

Na2С03 - карбонат натрия, СuSO4 - сульфат меди (II) и т. д.

Диссоциируют такие соли на катионы металла и анионы кислотного остатка:

Кислые соли - это продукты неполного замещения атомов водорода в кислоте на металл.

К кислым солям относят, например, питьевую соду, которая состоит из катиона металла и кислотного однозарядного остатка НСО3. Для кислой кальциевой соли формула записывается так: Са(НСО3)2.

Названия этих солей складываются из названий солей с прибавлением слова гидро, например:

Основные соли - это продукты неполного замещения гидроксогрупп в основании на кислотный остаток.

Например, к таким солям относится знаменитый малахит (СиОН)2 С03, о котором вы читали в сказах И. Бажова. Он состоит нз двух основных катионов СиОН и двухзарядного аниона кислотного остатка СО 2- 3.

Катион СuОН+ имеет заряд +1, поэтому в молекуле два таких катиона и один двухзарядный анион СО объединены в электронейтральную соль.

Названия таких солей будут такими же, как и у нормальных солей, но с прибавлением слова гидроксо-, например (СuОН)2 СО3 - гидроксокарбонат меди (II) или АlOНСl2 - гидроксохлорид алюминия. Подавляющее большинство основных солей нерастворимы или малорастворимы. Последние диссоциируют так:

Типичные реакции солей

4. Coль + металл -> другая соль + другой металл.

Первые две реакции обмена уже были подробно рассмотрены ранее.

Третья реакция также является реакцией обмена. Она протекает между растворами солей и сопровождается образованием оселка, например:

Четвертая реакция солей связана с именем крупнейшего русского химика Н.Н.Бекетова, который в 1865 г. изучал способность металлов вытеснять из растворов солей другие металлы. Например, медь tu растворов ее солей можно вытеснять такими металлами, как магний, алюминий Al, цинк и другими металлами. А вот ртутью, серебром Аg, золотом Аu медь не вытесняется, так как атм металлы в ряду напряжений расположены правее, чем медь. Зато медь вытесняет их из растворов солей:

H. Бекетов, действуя газообразным водородом под давлением на растворы солей ртути и серебра, установил, что при атом водород, так же как и некоторые другие металлы, вытесняет ртуть и серебро из их солей.

Располагая металлы, я также водород по их способности вытеснять друг друга ял растворов солей. Бекетов составил ряд. который он назвал вытеенительным рядом металлов. Позднее (1802 г. В. Нерист) было доказано, что вытесни тельный ряд Векетовп практически совпадает с рядом, в котором металлы и водород расположены (направо) в порядке уменьшения их восствнояятеяьяой способности и молярной концентрации ионов металла, равна 1 моль/л. Этот ряд называют алектрохимычесиим рядам напряжений металлов. Вы уже знакомились с этим рядом, когда рассматривали взаимодействие кислот с металлами и выяснили, что с растворами кислот взаимодействуют металлы, которые расположены левее водорода. Это первое при вило ряда напряжений Оно выполняется с соблюдением ряда условий, о которых мы говорили ранее.

Второе правило ряда напряжений заключается в следующем: каждый металл вытесняет из растворов солей все другие металлы, расположенные правее его в ряду напряжений. Это правило также соблюдается при выполнении условий:

а) обе соли (и реагирующая, и образующяяся в результате реакции) должны быть растворимыми;
б) металлы ие должны аза имодействовать с водой , поэтому металлы главных подгрупп I и II групп (для последней начиная с Са) ие вытесняют другие металлы на растворов солей.

1. Соли средние (нормальные), кислые и основные.

2. Диссоциация различных груп солей.

3. Типичные свойства нормальных солей: взаимодействие их с кислотами, щелочами, другими солями и металлами.

4. Два правила ряда напряжений металлов.

5. Условия протекания реакций солей с металлами.

Закончите молекулярные уравнения возможных реакций, протекающих в растворах, и запишите соответствующие им ионные уравнения:

Если реакция не может быть осуществлена, объясните почему.

К 980 г 5% -го раствора сорной кислоты прилили избыток раствора нитрата бария. Найдите массу выпавшего осадка.

Запишите уравнения реакций всех возможных способов получения сульфата железа (II).

Дайте названия солей.

Притчи к уроку химии , картинки к уроку химии 8 класса , рефераты для школьников

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Химические свойства солей

Соли следует рассматривать в виде продукта взаимодействия кислоты и основания. В итоге могут образовываться:

  1. нормальные (средние) - образуются при достаточном для полного взаимодействия количестве кислоты и основания. Названия нормальных соле й состоят из двух частей. В начале называется анион (кислотный остаток), затем катион.
  2. кислые - образуются при избытке кислоты и недостаточном количестве щелочи, потому как при этом катионов металла становится недостаточно для замещения всех катионов водорода, имеющихся в молекуле кислоты. В составе кислотных остатков данного вида солей вы всегда увидите водород. Кислые соли образуются только многоосновными кислотами и проявляют свойства как солей, так и кислот. В названиях кислых солей ставится приставка гидро- к аниону.
  3. основные соли - образуются при избытке основания и недостаточном количестве кислоты, потому как в данном случае анионов кислотных остатков недостаточно для полного замещения гидроксогрупп, имеющихся в основании. основные соли в составе катионов содержат гидроксогруппы. Основные соли возможны для многокислотных оснований, а для однокислотных нет. Некоторые основные соли способны самостоятельно разлагаться, при этом выделяя воду, образуя оксосоли, обладающие свойствами основных солей. Название основных солей строится следующим образом: к аниону добавляется приставка гидроксо- .

Типичные реакции нормальных солей

  • С металлами реагируют хорошо. При этом, более активные металлы вытесняют менее активные из растворов их солей.
  • С кислотами, щелочами и другими солями реакции проходят до конца, при условии образования осадка, газа или малодиссоциируемых соединений.
  • В реакциях солей со щелочами образуются такие вещества, как гидроксид никеля (II) Ni(OH) 2 – осадок; аммиак NH 3 – газ; вода H 2 О – слабый электролит, малодиссоциируемое соединение:
  • Соли реагируют между собой, если образуется осадок или в случае образования более устойчивого соединения.
  • Многие нормальные соли разлагаются при нагревании с образованием двух оксидов – кислотного и основного
  • Нитраты разлагаются другим, отличным от остальных нормальных солей образом. При нагревании нитраты щелочных и щелочноземельных металлов выделяют кислород и превращаются в нитриты:
  • Нитраты почти всех других металлов разлагаются до оксидов:
  • Нитраты некоторых тяжелых металлов (серебра, ртути и др) разлагаются при нагревании до металлов:

Типичные реакции кислых солей

  • Они вступают во все те реакции, в которые вступают кислоты. Со щелочами реагируют, если в составе кислой соли и щелочи имеется один и тот же металл, то в результате образуется нормальная соль.
  • Если же щелочь содержит другой металл, то образуются двойные соли.

Типичные реакции основных солей

  • Данные соли вступают в те же реакции, что и основания. С кислотами реагируют, если в составе основной соли и кислоты имеется один и тот же кислотный остаток, то в результате образуется нормальная соль.
  • Если же кислота содержит другой кислотный остаток, то образуются двойные соли.

Комплексные соли - соединение, в узлах кристаллической решетки которого содержатся комплексные ионы.

© 2024 Сайт по саморазвитию. Вопрос-ответ