Вконтакте Facebook Twitter Лента RSS

Направление протекания химических реакций. Самопроизвольно реакция может протекать только в направлении уменьшения энергии Гиббса Какие реакции не протекают

На протяжении всей жизни мы постоянно сталкиваемся с физическими и химическими явлениями. Природные физические явления для нас столь привычны, что мы уже давно не придаём им особого значения. Химические реакции постоянно протекают в нашем организме. Энергия, которая выделяется при химических реакциях, постоянно используется в быту, на производстве, при запуске космических кораблей. Многие материалы, из которых изготовлены окружающие нас вещи, не взяты в природе в готовом виде, а изготовлены с помощью химических реакций. В быту для нас не имеет особого смысла разбираться в том, что же произошло. Но при изучении физики и химии на достаточном уровне без этих знаний не обойтись. Как отличить физические явления от химических? Существуют ли какие-либо признаки, которые могут помочь это сделать?

При химических реакциях из одних веществ образуются новые, отличные от исходных. По исчезновению признаков первых и появлению признаков вторых, а также по выделению или поглощению энергии мы заключаем, что произошла химическая реакция.

Если прокалить медную пластинку, на её поверхности появляется чёрный налёт; при продувании углекислого газа через известковую воду выпадает белый осадок; когда горит древесина, появляются капли воды на холодных стенках сосуда, при горении магния получается порошок белого цвета.

Выходит, что признаками химической реакций являются изменение окраски, запаха, образование осадка, появление газа.

При рассмотрении химических реакций, необходимо обращать внимание не только на то, как они протекают, но и на условия, которые должны выполняться для начала и течения реакции.

Итак, какие же условия должны быть выполнены для того, чтобы началась химическая реакция?

Для этого прежде всего необходимы реагирующие вещества привести к соприкосновению (соединить, смешать их). Чем более измельчены вещества, чем больше поверхность их соприкосновения, тем быстрее и активнее протекает реакция между ними. Например, кусковой сахар трудно поджечь, но измельчённый и распылённый в воздухе он сгорает за считанные доли секунды, образуя своеобразный взрыв.

С помощью растворения мы можем раздробить вещество на мельчайшие частицы. Иногда предварительное растворение исходных веществ облегчает проведение химической реакции между веществами.

В некоторых случаях соприкосновение веществ, например, железа с влажным воздухом, достаточно, чтобы произошла реакция. Но чаще одного соприкосновения веществ для этого недостаточно: необходимо выполнение ещё каких-либо условий.

Так, медь не вступает в реакцию с кислородом воздуха при невысокой температуре около 20˚-25˚С. Чтобы вызвать реакцию соединения меди с кислородом, необходимо прибегнуть к нагреванию.

На возникновение химических реакций нагревание влияет по – разному. Для одних реакций требуется непрерывное нагревание. Прекращается нагревание – прекращается и химическая реакция. Например, для разложения сахара необходимо постоянное нагревание.

В других случаях нагревание требуется лишь для возникновения реакции, оно даёт толчок, а далее реакция протекает без нагревания. Например, такое нагревание мы наблюдаем при горении магния, древесины и других горючих веществ.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В химических системах вещества стремятся к минимуму внутренней энергии. Экзотермические реакции протекают самопроизвольно, так как вещества при их окончании достигают свой минимум внутренней энергии. Но также самопроизвольно протекают и эндотермические реакции - это растворение солей.

Макросостояние системы тем более вероятно, чем большим числом микросостояний оно может быть описано. Условия самопроизвольного протекания реакций:
1. стремление системы к достижению минимального значения внутренней энергии
2. стремление системы к более вероятному своему состоянию.

Но часто происходит столкновение этих двух определяющих факторов, и возникает состояние называемое химическим равновесием. Функция, которая учитывает оба этих фактора – энергия Гиббса .

Самопроизвольно протекают те процессы, энергия Гиббса которых равна отрицательному значению.

Если температура мала , то энтальпия равна энергии Гиббса и самопроизвольно протекают экзотермические реакции.

Если высокая температура, то отрицательное значение имеет энергия Гиббса и реакции протекают самопроизвольно. Необратимые реакции протекают до полного израсходования одного из реагентов.
Обратимые протекают во взаимопротивоположных направлениях.В состоянии химического равновесия система достигает своего минимального значения энергии и энергия Гиббса, как и константа химического равновесия, равна нулю .


Константа химического равновесия. Расчет Кр и Кс.

Рассмотрим гомогенную химическую реакцию: Реакции протекают до полного исчезновения исходных веществ, а останавливаются при достижении определенного состояния равновесия. Условия химического равновесия:

Равновесные давления участников реакции: Согласно закону действующих масс константа равновесия, выраженная через парциальные давления. Размерность . изменение числа молей при протекании реакции.

При написании констант равновесия гетерогенных реакции учитываются парциальные давления только газообразных участников реакций, поскольку давления пара конденсированных фаз малы по сравнению с газообразными компонентами.

константа равновесия, выраженная через концентрации.

Кроме того существуют где а-активности, н-мольная доля.

Соотношения между константами равновесия:

Принцип Ле-Шателье.

При неизменных условиях химическое равновесие в системе может сохраняться сколь угодно долго. В случае же изменения условий (концентрация, температура, давление) одна из противоположно направленных реакций может ускориться, чем другая. После этого равновесие сместится, и установится новое состояние равновесия.

Принцип Ле-Шателье: если на систему, находящуюся в истинном химическом равновесии, оказывают воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении той реакции, протекание которой ослабляет эффект произведенного воздействия.

I закон термодинамики устанавливает взаимосвязь между внутренней энергией, теплотой и работой и позволяет рассчитывать тепловые эффекты различных процессов, но при этом обладает одним существенным недостатком: он ничего не говорит о направлении самопроизвольного протекания процесса. Действительно, с точки зрения I закона термодинамики барон Мюнхгаузен, пытаясь вытащить себя и лошадь из болота за косичку, затратив некоторое количество энергии, не сделал ничего предосудительного. Можно привести и другой пример. Процесс нагревания-охлаждения воды является обратимым. Воду в чайнике можно довести до кипения при помощи электрического тока, однако при остывании воды ток в цепи не возникает.

Ответ даёт II закон термодинамики .

Любой самопроизвольно протекающий процесс (химическая реакция) реализуется как результат соотношения двух основных тенденций:

1) стремление системы свести к минимуму свой запас внутренней энергии, выделить избыток этой энергии в окружающую среду – принцип Бертло-Томсена;

2) стремление системы перейти в наиболее вероятное , т.е. наиболее устойчивое состояние, характеризующееся максимальной степенью беспорядка, хаотичности.

1-я тенденция учитывает энтальпийный фактор и проявляется в том, что большинство самопроизвольно протекающих реакций имеет экзотермический характер, DH р-я < 0.

2-я тенденция учитывает энтропийный фактор, ΔS > 0.

Энтропия S – функция состояния системы, определяющая её термодинамическую вероятность и в этом смысле устойчивость данного состояния.

Физический смысл энтропии установила статистическая термодинамика. Согласно уравнению Больцмана:

, (9)

где - постоянная Больцмана, R – универсальная газовая постоянная, N A – число Авогадро; W - число способов, которыми система может осуществить свое макросостояние, или, другими словами, это термодинамическая вероятность данного макросостояния системы, которая определяется числом способов и вариантов распределения микрочастиц (молекул, атомов, ионов и т.д.).

Статистическая трактовка понятия энтропии означает, что в отличие от энергии, которая присуща каждой отдельной частице, энтропия отражает свойства набора частиц. Отдельная частица энтропией не обладает.

Таким образом, энтропия характеризует неупорядоченность, вероятность существования системы и является таким же свойством вещества или системы , зависящим от их природы и состояния, как температура, давление, внутренняя энергия и энтальпия.

Как и для других термодинамических функций состояния, в расчётах используют стандартные значения энтропии S (Дж/K) и S 0 (Дж/моль×K).

Как и энергия, энтропия не относится к числу экспериментально определяемых величин. В обратимом процессе, протекающем в изотермических условиях, изменение энтропии равно:

Это означает, что при необратимом протекании процесса энтропия возрастает благодаря переходу части работы в теплоту.

Таким образом, в обратимых процессах система совершает максимально возможную работу. При необратимом процессе система всегда совершает меньшую работу.

Переход работы в теплоту в необратимом процессе означает переход от упорядоченной формы материи к неупорядоченной. Отсюда и возникает трактовка энтропии как меры беспорядка в системе:

При увеличении беспорядка в системе энтропия возрастает и, наоборот, при упорядочивании системы энтропия уменьшается.

Внеобратимых процессах, сопровождающихся увеличением S, энтропия производится (возникает), это происходит, например, при выравнивании концентраций.

Энтропия закрытой системы может изменяться и при обмене системы с окружающей средой теплотой , т.е. только энергией.

Изменение энтропии в результате теплообмена называется потоком энтропии и определяется уравнением:

Где Q ‑ теплота, которой обменивается система с внешней средой при температуре Т.

Общее изменение энтропии системыопределяется суммой производимой энтропии (в необратимом процессе) и потока энтропии (приобретаемой или выделяемой в результате теплообмена). В обратимых процессах энтропия не производится и всё её изменение определяется только потоком энтропии.

Большинство протекающих в природе процессов является необратимыми и сопровождаются производством энтропии.

В процессе испарения воды энтропия увеличивается, в процессе кристаллизации - уменьшается. В реакциях разложения энтропия увеличивается, в реакциях соединения - уменьшается.

Если обратимый процесс протекает в изобарно-изотермических условиях, то должны выполняться следующие соотношения:

От соотношения величин, стоящих в левой и правой части последнего выражения, зависит направление самопроизвольного протекания процесса.

Если процесс проходит в изобарно-изотермических условиях, то общая движущая сила процесса называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (DG) :

Уравнение Гиббса:

ΔG = ΔH – T×ΔS (16)

Энтальпийный энтропийный

Фактор фактор

Энергия Гиббса измеряется в Дж или в кДж.

Знак DG позволяет определить направление самопроизвольного протекания процесса:

Если DG < 0, то процесс в принципе осуществим, в данных условиях он теоретически может идти самопроизвольно, а абсолютное значение разности ΔН ‑ ТΔS определяет движущую силу этого процесса.

Если DG > 0, то в данных условиях реакция самопроизвольно протекать не может, и осуществима обратная реакция, для которой ΔG < 0.

Если DG = 0, реакция обратима, это критерий состояния химического равновесия.

Анализ соотношения энтальпийного и энтропийного факторов в уравнении (16) позволяет сделать следующие заключения:

1. При низких температурах преобладает энтальпийный фактор, и самопроизвольно протекают, в основном, экзотермические процессы;

2. При высоких температурах решающую роль играетэнтропийный член уравнения, возрастающий в реакциях разложения. Поэтому при достаточно больших температурах не могут существовать сложные системы.

Предложенный подход позволяет целенаправленно подбирать условия, при которых процесс протекает в заданном направлении.

Скорость химической реакции – это изменение количества реагирующего вещества или продукта реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной реакции).

Закон действующих масс : зависимость скорости реакции от концентрации реагирующих веществ. Чем выше концентрация, тем большее число молекул содержится в объеме. Следовательно, возрастает число соударений, что приводит к увеличению скорости процесса.

Кинетическое уравнение – зависимость скорости реакции от концентрации.

Твердые тела равны 0

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Общий порядок реакции - это сумма показателей степеней концентрации в кинетическом уравнении.

Константа скорости реакции - коэффициент пропорциональности в кинетическом уравнении.

Правило Вант-Гоффа: При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два - четыре раза

Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:

    Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.

    Молекулы должны обладать необходимой энергией (энергией активации).

    Молекулы должны быть правильно ориентированы относительно друг друга.

Энергия активации - минимальное количество энергии, которое требуется сообщить системе, чтобы произошла реакция.

Уравнение Аррениуса устанавливает зависимость константы скорости химической реакции от температуры

A - характеризует частоту столкновений реагирующих молекул

R - универсальная газовая постоянная.

Влияние катализаторов на скорость реакции.

Катализатор – это вещество, изменяющее скорость химической реакции, но само в реакции не расходуется и в конечные продукты не входит.

При этом изменение скорости реакции происходит за счет изменения энергии активации, причем катализатор с реагентами образует активированный комплекс.

Катализ - химическое явление, суть которого заключается в изменении скоростей химических реакций при действии некоторых веществ (их называют катализаторами).

Гетерогенный катализ - реагент и катализатор находятся в разных фазах - газообразной и твердой.

Гомогенный катализе - реагенты (реактивы) и катализатор находятся в одной фазе - например, оба являются газами или оба растворены в каком-либо растворителе.

Условия химического равновесия

состояние химического равновесия сохраняется до тех пор, пока остаются неизменными условия реакции: концентрация, температура и давление.

Принцип Ле-Шателье: если на систему, находящуюся в равновесии оказано какое-либо внешнее воздействии, то равновесии сместится в сторону той реакции, которое это действие будет ослаблять.

Константа равновесия – это мера полноты протекания реакции, чем больше величина константы равновесия, тем выше степень превращение исходных веществ в продукты реакции.

К р =С пр \С исх

ΔG<0 К р >1 С пр > С исх

ΔG>0 К р <1 С пр <С исх

I закон термодинамики позволяет рассчитывать тепловые эффекты различных процессов, но не дает информацию о направлении протекания процесса.

Для протекающих в природе процессов известны две движущие силы:

1. Стремление системы перейти в состояние с наименьшим запасом энергии;

2. Стремление системы к достижению наиболее вероятного состояния, которое характеризуется максимальным количеством независимых частиц.

Первый фактор характеризуется изменением энтальпии. Рассматриваемый случай должен сопровождаться выделением теплоты, следовательно, DH < 0.

Второй фактор определяется температурой и изменением энтропии .

Энтропия (S) - термодинамическая функция состояния системы, которая отражает вероятность реализации того или иного состояния системы в процессе теплообмена.

Как и энергия, энтропия не относится к числу экспериментально определяемых величин. В обратимом процессе, протекающем в изотермических условиях, изменение энтропии можно рассчитать по формуле:

Это означает, что при необратимом протекании процесса энтропия возрастает благодаря переходу в теплоту части работы.

Таким образом, в обратимых процессах система совершает максимально возможную работу. При необратимом процессе система всегда совершает меньшую работу.

Переход потерянной работы в теплоту является особенностью теплоты как макроскопически неупорядоченной формы передачи энергии. Отсюда возникает трактовка энтропии как меры беспорядка в системе:

При увеличении беспорядка в системе энтропия возрастает и, наоборот, при упорядочиваниии системы энтропия уменьшается.

Так, в процессе испарения воды энтропия увеличивается, в процессе кристаллизации воды - уменьшается. В реакциях разложения энтропия увеличивается, в реакциях соединения - уменьшается.

Физический смысл энтропии установила статистическая термодинамика. Согласно уравнению Больцмана:

От соотношения величин, стоящих в левой и правой части последнего выражения, зависит направление самопроизвольного протекания процесса.

Если процесс проходит в изобарно-изотермических условиях, то общая движущая сила процесса называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (DG) :

. (15)

Величина DG позволяет определить направление самопроизвольного протекания процесса:

Если DG < 0, то процесс самопроизвольно протекает в прямом направлении;

Если DG > 0, то процесс самопроизвольно протекает в обратном направлении;

Если DG = 0, то состояние является равновесным.

В живых организмах, представляющих собой открытые системы, главным источником энергии для многих биологических реакций - от биосинтеза белка и ионного транспорта до сокращения мышц и электрической активности нервных клеток - является АТФ (аденозин-5¢-трифосфат).

Энергия выделяется при гидролизе АТФ:

АТФ + H 2 O ⇄ АДФ + H 3 PO 4

где АДФ - аденозин-5¢-дифосфат.

DG 0 данной реакции составляет -30 кДж, следовательно процесс протекает самопроизвольно в прямом направлении.

Анализ соотношения энтальпийного и энтропийного факторов в уравнении для расчета изобарно-изотермического потенциала позволяет сделать следующие заключения:

1. При низких температурах преобладает энтальпийный фактор, и самопроизвольно протекают экзотермические процессы;

2. При высоких температурах преобладает энтропийный фактор, и самопроизвольно протекают процессы, сопровождающиеся увеличением энтропии.

На основании изложенного материала можно сформулировать II закон термодинамики:

В изобарно-изотермических условиях в изолированной системе самопроизвольно протекают те процессы, которые сопровождаются увеличением энтропии.

Действительно, в изолированной системе теплообмен невозможен, следовательно, DH = 0 и DG » -T×DS. Отсюда видно, что если величина DS положительна, то величина DG отрицательна и, следовательно, процесс самопроизвольно протекает в прямом направлении.

Другая формулировка II закона термодинамики:

Невозможен некомпенсированный переход теплоты от менее нагретых тел к более нагретым.

В химических процессах изменения энтропии и энергии Гиббса определяют в соответствии с законом Гесса:

, (16)
. (17)

Реакции, для которых DG < 0 называют экзэргоническими .

Реакции, для которых DG > 0 называют эндэргоническими .

Величину DG химической реакции можно также определить из соотношения:

DG = DH - T×DS.

В табл. 1 показана возможность (или невозможность) самопроизвольного протекания реакции при различных сочетаниях знаков DH и DS.


Эталоны решения задач

1. Некоторая реакция протекает с уменьшением энтропии. Определить, при каком условии возможно самопроизвольное протекание данной реакции.

Условием самопроизвольного протекания реакции является уменьшение свободной энергии Гиббса, т.е. DG < 0. Изменение DG можно рассчитать по формуле:

Так как в ходе реакции энтропия уменьшается (DS < 0), то энтропийный фактор препятствует самопроизвольному протеканию данной реакции. Таким образом, самопроизвольное протекание данной реакции может обеспечить только энтальпийный фактор. Для этого необходимо выполнение следующих условий:

1) DH < 0 (реакция экзотермическая);

2) (процесс должен протекать при низких температурах).

2. Эндотермическая реакция разложения протекает самопроизвольно. Оценить изменение энтальпии, энтропии и величины свободной энергии Гиббса.

1) Так как реакция эндотермическая, то DH > 0.

2) В реакциях разложения энтропия возрастает, следовательно DS > 0.

3) Самопроизвольное протекание реакции свидетельствует о том, что DG < 0.

3. Вычислить стандартную энтальпию хемосинтеза, протекающего в бактериях Thiobacillus denitrificans:

6KNO 3(тв.) + 5S (тв.) + 2CaCO 3(тв.) = 3K 2 SO 4(тв.) + 2CaSO 4(тв.) + 2CO 2(газ) + 3N 2(газ)

по значениям стандартных энтальпий образования веществ:

Запишем выражение первого следствия из закона Гесса с учетом того, что стандартные энтальпии образования серы и азота равны нулю:

= (3× K 2 SO 4 + 2× CaSO 4 + 2× CO 2) -

- (6× KNO 3 + 2× CaCO 3).

Подставим значения стандартных энтальпий образования веществ:

3×(-1438) + 2×(-1432) + 2×(-393,5) - (6×(-493) + 2×(-1207)).

2593 кДж.

Так как < 0, то реакция экзотермическая.

4. Вычислить стандартную энтальпию реакции:

2C 2 H 5 OH (жидк.) = C 2 H 5 OC 2 H 5(жидк.) + H 2 O (жидк.)

по значениям стандартных энтальпий сгорания веществ:

C 2 H 5 OH = -1368 кДж/моль;

C 2 H 5 OC 2 H 5 = -2727 кДж/моль.

Запишем выражение второго следствия из закона Гесса с учетом того, что стандартная энтальпия сгорания воды (высший оксид) равна нулю:

2× C 2 H 5 OH - C 2 H 5 OC 2 H 5 .

Подставим значения стандартных энтальпий сгорания веществ, участвующих в реакции:

2×(-1368) - (-2727).

Следствия из закона Гесса позволяют вычислять не только стандартные энтальпии реакций, но и величины стандартных энтальпий образования и сгорания веществ по косвенным данным.

5. Определить стандартную энтальпию образования оксида углерода (II) по следующим данным:

Из уравнения (1) видно, что стандартное изменение энтальпии данной реакции соответствует стандартной энтальпии образования CO 2 .

Запишем выражение первого следствия из закона Гесса для реакции (2):

CO = CO 2 - .

Подставим значения и получим:

CO = -293,5 - (-283) = -110,5 кДж/моль.

Эту задачу можно решить и другим способом.

Вычитая из первого уравнения второе, получим:

6. Вычислить стандартную энтропию реакции:

CH 4(газ) + Cl 2(газ) = CH 3 Cl (газ) + HCl (газ) ,

по значениям стандартных энтропий веществ:

Стандартную энтропию реакции вычислим по формуле:

= ( CH 3 Cl + HCl) - ( CH 4 + Cl 2).

234 + 187 - (186 + 223) = 12 Дж/(моль×K).

7. Вычислить стандартную энергию Гиббса реакции:

C 2 H 5 OH (жидк.) + H 2 O 2(жидк.) = CH 3 COH (газ) + 2H 2 O (жидк.)

по следующим данным:

Определить, возможно ли самопроизвольное протекание данной реакции при стандартных условиях.

Стандартную энергию Гиббса реакции вычислим по формуле:

= ( CH 3 COH + 2× H 2 O) - ( C 2 H 5 OH + H 2 O 2).

Подставляя табличные значения, получим:

129 + 2×(-237) - ((-175) + (-121) = -307 кДж/моль.

Так как < 0, то самопроизвольное протекание данной реакции возможно.

С 6 H 12 O 6(тв.) + 6O 2(газ) = 6CO 2(газ) + 6H 2 O (жидк.) .

по известным данным:

Значения стандартных энтальпии и энтропии реакции рассчитаем при помощи первого следствия из закона Гесса:

6 CO 2 + 6 H 2 O - С 6 H 12 O 6 - 6 O 2 =

6×(-393,5) + 6×(-286) - (-1274,5) - 6×0 = -2803 кДж;

6 СО 2 + 6 H 2 O - С 6 H 12 O 6 - 6 O 2 =

6×214 + 6×70 - 212 - 6×205 = 262 Дж/К = 0,262 кДж/К.

Стандартную энергию Гиббса реакции найдем из соотношения:

T× = -2803 кДж - 298,15 K×0,262 кДж/К =

9. Вычислить стандартную энергию Гиббса реакции гидратации сывороточного альбумина при 25 0 С, для которой DH 0 = -6,08 кДж/моль, DS 0 = -5,85 Дж/(моль×К). Оценить вклад энтальпийного и энтропийного фактора.

Стандартную энергию Гиббса реакции рассчитаем по формуле:

DG 0 = DH 0 - T×DS 0 .

Подставив значения, получим:

DG 0 = -6,08 кДж/моль - 298 К×(-5,85×10 - 3) кДж/(моль×К) =

4,34 кДж/моль.

В данном случае энтропийный фактор препятствует протеканию реакции, а энтальпийный - благоприятствует. Самопроизвольное протекание реакции возможно при условии, если , т.е., при низких температурах.

10. Определить температуру, при которой самопроизвольно пойдет реакция денатурации трипсина, если = 283 кДж/моль, = 288 Дж/(моль×К).

Температуру, при которой равновероятны оба процесса найдем из соотношения:

В данном случае энтальпийный фактор препятствует протеканию реакции, а энтропийный - благоприятствует. Самопроизвольное протекание реакции возможно при условии, если:

Таким образом, условием самопроизвольного протекания процесса является T > 983 K.


Вопросы для самоконтроля

1. Что такое термодинамическая система? Какие типы термодинамических систем вы знаете?

2. Перечислите известные Вам термодинамические параметры. Какие из них относятся к измеряемым? Какие к неизмеряемым?

3. Что такое термодинамический процесс? Как называются процессы, протекающие при постоянстве одного из параметров?

4. Какие процессы называют экзотермическими? Какие эндотермическими?

5. Какие процессы называют обратимыми? Какие необратимыми?

6. Что понимают под термином «состояние системы»? Какие бывают состояния системы?

7. Какие системы изучает классическая термодинамика? Сформулируйте первый и второй постулаты термодинамики.

8. Какие переменные называют функциями состояния? Перечислите известные вам функции состояния.

9. Что такое внутренняя энергия? Можно ли измерить внутреннюю энергию?

10. Что такое энтальпия? Какова ее размерность?

11. Что такое энтропия? Какова ее размерность?

12. Что такое свободная энергия Гиббса? Как ее можно вычислить? Что можно определить при помощи этой функции?

13. Какие реакции называют экзэргоническими? Какие эндэргоническими?

14. Сформулируйте первый закон термодинамики. В чем заключается эквивалентность теплоты и работы?

15. Сформулируйте закон Гесса и следствия из него. Что такое стандартная энтальпия образования (сгорания) вещества?

16. Сформулируйте второй закон термодинамики. При каком условии процесс самопроизвольно протекает в изолированной системе?


Варианты задач для самостоятельного решения

Вариант № 1

4NH 3(газ) + 5O 2(газ) = 4NO (газ) + 6H 2 O (газ) ,

Определить, к какому типу (экзо- или эндотермическому) относится эта реакция.

С 2 H 6(газ) + H 2(газ) = 2CH 4(газ) ,

3. Вычислить стандартную энергию Гиббса реакции гидратации b-лактоглобулина при 25 0 С, для которой DH 0 = -6,75 кДж, DS 0 = -9,74 Дж/К. Оценить вклад энтальпийного и энтропийного фактора.

Вариант №2

1. Вычислить стандартную энтальпию реакции:

2NO 2(газ) + O 3(газ) = O 2(газ) + N 2 O 5(газ) ,

используя значения стандартных энтальпий образования веществ:

Определить, к какому типу (экзо- или эндотермическому) относится эта реакция.

2. Вычислить стандартную энтальпию реакции:

используя значения стандартных энтальпий сгорания веществ:

3. Вычислить стандартную энергию Гиббса реакции тепловой денатурации химотрипсиногена при 50 0 С, для которой DH 0 = 417 кДж, DS 0 = 1,32 Дж/К. Оценить вклад энтальпийного и энтропийного фактора.

Вариант №3

1. Вычислить стандартную энтальпию реакции гидрирования бензола до циклогексана двумя способами, т.е., используя значения стандартных энтальпий образования и сгорания веществ:

Cu (тв.) + ZnO (тв.) = CuO (тв.) + Zn (тв.)

3. При восстановлении 12,7 г оксида меди (II) углем (с образованием CO) поглощается 8,24 кДж теплоты. Определить стандартную энтальпию образования CuO, если CO = -111 кДж/моль.

Вариант №4

1. Вычислить стандартную энтальпию хемосинтеза, протекающего в автотрофных бактериях Baglatoa и Thiothpix, по стадиям и суммарно:

2H 2 S (газ) + O 2(газ) = 2H 2 O (жидк.) + 2S (тв.) ;

2S (тв.) + 3O 2(газ) + 2H 2 O (жидк.) = 2H 2 SO 4(жидк.) ,

2. Вычислить стандартную энтальпию реакции:

С 6 H 12 O 6(тв.) = 2C 2 H 5 OH (жидк.) + 2CO 2(газ) ,

используя значения стандартных энтальпий сгорания веществ:

4HCl (газ) + O 2(газ) = 2Cl 2(газ) + 2H 2 O (жидк.)

по известным данным:

Вариант №5

1. Вычислить стандартную энтальпию реакции:

2CH 3 Cl (газ) + 3O 2(газ) = 2CO 2(газ) + 2H 2 O (жидк.) + 2HCl (газ) ,

используя значения стандартных энтальпий образования веществ:

Определить, к какому типу (экзо- или эндотермическому) относится эта реакция.

2. Вычислить стандартную энтальпию реакции:

С 6 H 6(жидк.) + 3H 2(газ) = C 6 H 12(жидк.) ,

используя значения стандартных энтальпий сгорания веществ:

3. Вычислить стандартную энергию Гиббса реакции денатурации трипсина при 50 0 С, для которой DH 0 = 283 кДж, DS 0 = 288 Дж/К). Оценить возможность протекания процесса в прямом направлении.

Вариант №6

1. Вычислить стандартную энтальпию хемосинтеза, протекающего в автотрофных бактериях Thiobacillus Thioparus:

5Na 2 S 2 O 3 ×5H 2 O (тв.) + 7O 2(газ) = 5Na 2 SO 4(тв.) + 3H 2 SO 4(ж.) + 2S (тв.) + 22H 2 O (ж.) ,

Определить, к какому типу (экзо- или эндотермическому) относится эта реакция.

2. Вычислить стандартную энтальпию реакции:

С 6 H 5 NO 2(жидк.) + 3H 2(газ) = С 6 H 5 NH 2(жидк.) + 2H 2 O (жидк.) ,

используя значения стандартных энтальпий сгорания веществ:

3. Оценить роль энтальпийного и энтропийного факторов для реакции:

H 2 O 2(жидк.) + O 3(газ) = 2O 2(газ) + H 2 O (жидк.)

по известным данным:

Определить температуру, при которой реакция пойдет самопроизвольно.

Вариант №7

1. Вычислить стандартную энтальпию образования CH 3 OH по следующим данным:

CH 3 OH (жидк.) + 1,5O 2(газ) = CO 2(газ) + 2H 2 O (жидк.) DH 0 = -726,5 кДж;

С (графит) + O 2(газ) = CO 2(газ) DH 0 = -393,5 кДж;

H 2(газ) + 0,5O 2(газ) = H 2 O (жидк.) DH 0 = -286 кДж.

2. Оценить возможность самопроизвольного протекания реакции:

8Al (тв.) + 3Fe 3 O 4(тв.) = 9Fe (тв.) + Al 2 O 3(тв.)

при стандартных условиях, если:

3. Вычислить значение DH 0 для возможных реакций превращения глюкозы:

1) C 6 H 12 O 6(кр.) = 2C 2 H 5 OH (жидк.) + 2CO 2(газ) ;

2) C 6 H 12 O 6(кр.) + 6O 2(газ) = 6CO 2(газ) + 6H 2 O (жидк.) .

по известным данным:

В результате какой из этих реакций выделяется большее количество энергии?

Вариант №8

1. Вычислить стандартную энтальпию образования MgCO 3 по следующим данным:

MgO (тв.) + CO 2(газ) = MgCO 3(тв.) +118 кДж;

С 2 H 6(газ) + H 2(газ) = 2CH 4(газ)

по известным данным:

3. Какие из перечисленных оксидов: CaO, FeO, CuO, PbO, FeO, Cr 2 O 3 могут быть восстановлены алюминием до свободного металла при 298 К:

Вариант №9

1. Вычислить стандартную энтальпию образования Ca 3 (PO 4) 2 по следующим данным:

3CaO (тв.) + P 2 O 5(тв.) = Ca 3 (PO 4) 2(тв.) DH 0 = -739 кДж;

P 4(тв.) + 5O 2(газ) = 2P 2 O 5(тв.) DH 0 = -2984 кДж;

Ca (тв.) + 0,5O 2(газ) = CaO (тв.) DH 0 = -636 кДж.

2. Оценить возможность самопроизвольного протекания реакции:

Fe 2 O 3(тв.) + 3CO (газ) = 2Fe (тв.) + 3CO 2(газ)

при стандартных условиях, если:

3. Определить, какие из перечисленных оксидов: CuO, PbO 2 , ZnO, CaO, Al 2 O 3 могут быть восстановлены водородом до свободного металла при 298 К, если известно:

Вариант №10

1. Вычислить стандартную энтальпию образования этанола по следующим данным:

DH 0 сгор. C 2 H 5 OH = -1368 кДж/моль;

С (графит) + O 2(газ) = CO 2(газ) +393,5 кДж;

H 2(газ) + O 2(газ) = H 2 O (жидк.) +286 кДж.

2. Вычислить стандартную энтропию реакции:

С 2 H 2(газ) + 2H 2(газ) = C 2 H 6(газ) ,

по известным данным:

3. Вычислить количество энергии, которое выделится в организме человека, который съел 2 кусочка сахара по 5 г каждый, считая, что основной путь метаболизма сахарозы сводится к ее окислению:

C 12 H 22 O 11(тв.) + 12O 2(газ) = 12CO 2(газ) + 11H 2 O (жидк.) = -5651 кДж.

Вариант №11

1. Вычислить стандартную энтальпию образования С 2 H 4 по следующим данным:

С 2 H 4(газ) + 3O 2(газ) = 2CO 2(газ) + 2H 2 O (жидк.) +1323 кДж;

С (графит) + O 2(газ) = CO 2(газ) +393,5 кДж;

H 2(газ) + 0,5O 2(газ) = H 2 O (жидк.) +286 кДж.

2. Не производя вычислений, установить знак DS 0 следующих процессов:

1) 2NH 3(газ) = N 2(газ) + 3H 2(газ) ;

2) CO 2(кр.) = CO 2(газ) ;

3) 2NO (газ) + O 2(газ) = 2NO 2(газ) .

3. Определить, по какому уравнению реакции будет протекать разложение пероксида водорода при стандартных условиях:

1) H 2 O 2(газ) = H 2(газ) + O 2(газ) ;

2) H 2 O 2(газ) = H 2 O (жидк.) + 0,5O 2(газ) ,

Вариант №12

1. Вычислить стандартную энтальпию образования ZnSO 4 по следующим данным:

2ZnS + 3O 2 = 2ZnO + SO 2 DH 0 = -890 кДж;

2SO 2 + O 2 = 2SO 3 DH 0 = -196 кДж;

H 2 O (тв.) = H 2 O (жидк.) ,

H 2 O (жидк.) = H 2 O (газ) ,

H 2 O (тв.) = H 2 O (газ) .

по известным данным:

3. Вычислить количество энергии, которое выделится при сгорании 10 г бензола, по следующим данным:

Вариант №14

1. Вычислить стандартную энтальпию образования PCl 5 по следующим данным:

P 4(тв.) + 6Cl 2(газ) = 4PCl 3(газ) DH 0 = -1224 кДж;

PCl 3(газ) + Cl 2(газ) = PCl 5(газ) DH 0 = -93 кДж.

2. Вычислить стандартное изменение энергии Гиббса образования сероуглерода CS 2 по следующим данным:

CS 2(жидк.) + 3O 2(газ) = CO 2(газ) + 2SO 2(газ) DG 0 = -930 кДж;

CO 2 = -394 кДж/моль; SO 2 = -300 кДж/моль.

3. Оценить роль энтальпийного и энтропийного факторов для реакции:

CaCO 3(тв.) = CaO (тв.) + CO 2(газ)

по известным данным:

Определить температуру, при которой реакция пойдет самопроизвольно.

Вариант №15

1. Вычислить тепловой эффект реакции образования кристаллогидрата CuSO 4 ×5H 2 O, протекающей по уравнению:

CuSO 4(тв.) + 5H 2 O (жидк.) = CuSO 4 ×5H 2 O (тв.) ,

© 2024 Сайт по саморазвитию. Вопрос-ответ